• Title/Summary/Keyword: 전해질 용출

Search Result 22, Processing Time 0.025 seconds

Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira (돈나무의 내한성 평가 모델링)

  • Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.241-251
    • /
    • 2014
  • This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.

Cold Tolerance Assessment of Ever Ground-cover Plants for Extensive Green Roof System (저관리형 옥상녹화를 위한 상록 지피식물의 내한성 평가)

  • Zhao, Hong-Xia;Li, Hong;Son, Hee-Jun;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.127-134
    • /
    • 2012
  • This study was carried out to suggest an experimental base in selecting the cold tolerance of plants. The cold tolerance of the plants were subject to laboratory low temperature treatments and cold processing time were evaluated using both electrolyte leakage and regrowth test. The Logistic model of nonlinear regression analysis was used to evaluate the lethal temperatures that were predicted with the range of $-16.1{\sim}-24.4^{\circ}C$. The order of low-temperature resistance was Sedum reflexum > S. spurium > Ophiopogon japonicus > S. album > S. takevimense > Dianthus chinensis. At the lowest temperature of $13.4^{\circ}C$ the electrolyte leakage value of the plants were lower than 50% demonstrating that they could be applied stably to the roof installed in Korea during the winter with the lowest temperature of $-13.5^{\circ}C$.

A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers (고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법)

  • Chung, Young-Min
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.262-268
    • /
    • 2015
  • In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

Field application on bioelectrokinetic remediation of shooting range soil (생물학적으로 향상된 동전기 처리를 이용한 사격장 오염토양 정화 현장실증 연구)

  • Kwon, Young-Ho;Kim, Byeong-Kyu;Kim, Jeong-Rae;Kim, Jeong-Yeon;Oh, Hee-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1225-1230
    • /
    • 2010
  • 본 연구는 군부대 사격장의 중금속 오염토양에 대하여 생물학적 용출기술(BT)과 전기동력학적 기술(ET)의 통합공정의 적용성 평가 연구에 대한 것이다. 사격장 오염 토양의 경우 사격에 의해 탄두가 피탄지에 박히면서 오염토양 내에 잔존하여 탄두를 구성하는 주성분인 납과 구리 등에 의해 지속적인 오염원으로 작용하는 특징을 가진다. 따라서 사격장 토양오염정화를 위해서는 이 탄두를 물리적으로 선별하는 물리적 선별공정을 전처리공정으로 수행한 후 인공적으로 조성된 셀에 통합공정 적용성 평가를 위한 현장실증시험을 수행하였다. 생물학적 용출을 통해 토양내 잔류하는 중금속을 이온화시켜 이동성을 크게 한후 전기동력학적 기술을 통해 토양내에서 전해질로 이동시켜 최종적으로 전해질을 처리하는 시스템으로써 공정 모니터링결과 납과 구리 모두 주목할 만한 제거효율을 얻을수 있었다. 오염물질별 공정 적용성 평가결과 납의 경우 황산화박테리아에 의해 이온화가 되지만 황산화박테리아의 생장 부산물인 황산염이온(${SO_4}^{2-}$)과 반응하여 안정성이 큰 Anglesite($PbSO_4 $)를 형성하므로 전체적인 제거효율이 저하되는 것을 확인하였고 기타 미생물을 이용한 생물학적 용출기술 연구의 필요성을 확인하였다. 구리의 경우 황산염박테리아를 이용한 생물학적 용출공정 및 전기동력학적 처리공정의 통합공정을 통해 주목할 만한 제거효율을 얻을수 있었으며 통합공정의 효율성을 확인할 수 있었다. 본 연구를 통하여 미생물학적 용출기술과 전기동력학적 기술의 통합공정은 현장특이성(Site-specific) 확인후 적용가능성이 있음을 확인하였다.

  • PDF

Effects of Surfactants on the Growth of Anodic Nanoporous Niobium Oxide (양극산화를 통한 다공성 니오븀 산화물 성장의 계면활성제 영향)

  • Yoo, Jeong-Eun;Choi, Jin-Sub
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.163-168
    • /
    • 2010
  • Effects of Cetyl Trimethyl Ammonium Bromide (CTAB), which is a kind of cationic surfactants, and Sodium Dodecyl Sulfate (SDS), which is a kind of anionic surfactants on the anodic formation of nanoporous niobium oxide were compared. The addition of SDS could protect the surface from dissolution for long time, leading to the formation of niobium oxide with a double thickness (~400 nm) compared to that prepared without surfactant, whereas dissolution seriously occurred in the solution containing CTAB. The different behaviors were attributed to the interaction between the surfactants with positive (or negative) charge and positively charged niobium oxide.

The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning (더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수)

  • Kim, Bong-JuK;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2014
  • In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacteria leaching and sulfuric acid leaching solution, respectively. Sodium hydroxide (NaOH), hydrogen peroxide ($H_2O_2$) and calcium hydroxide ($Ca(OH)_2$) were applied to effectively remov Fe from the heap leaching solution, and then $H_2O_2$ was selected for the most effective removing Fe agent. In order to prepare the electrolytic solution, $H_2O_2$ were again treated in the heap leaching, and Fe removal rates were 99% and 60%, whereas Cu removal rates were 5% and 7% in the bacteria and sulfuric acid leaching solutions, respectively. After electrowinning was examined in these leaching solution, the recovery rates of Cu were obtained 98% in bacteria and obtained 76% in the sulfuric leaching solution. The dendritic form of metallic copper powder was recovered in both leaching solutions.

Effects of Temperature and Partial Pressure of ${CO_2}/{O_2$ on Corrosion Behavior of Stainless Steel in Molten Li/Na Carbonate Salt (Li/Na계 용융탄산염에 대한 스테인레스강의 부식에 미치는 온도와 ${CO_2}/{O_2$ 분압의 영향)

  • 황응림;하흥용;임태훈;홍성안
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.225-228
    • /
    • 1999
  • MCFC의 장수명화를 위해 기존의 Li$_2$CO$_3$-K$_2$CO$_3$계 전해질을 Li$_2$CO$_3$-$Na_2$CO$_3$계 용융탄산염으로 대체함으로써, 전지 수명을 단축시키는 NiO의 용출을 억제하고자하는 연구가 진행중에 있다. 이러한 대체 Li$_2$CO$_3$-$Na_2$CO$_3$ 전해질은 실제 전지에서 사용되고 있는 분리판 재료인 스테인레스강의 안정성에도 기존의 Li$_2$CO$_3$-K$_2$CO$_3$ 혼합염과는 다른 경향을 보이는 것으로 알려져 있다.(중략)

  • PDF

Assessment of Roof-rainwater Utilization System and Drought Resistance of Ground Cover Plants (지피식물을 이용한 우수저장형 옥상녹화 시스템 및 식물 내건성 평가)

  • Kang, Tai-Ho;Zhao, Hong-Xia
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • In order to evaluate 2 extensive green roof systems(Sedum Box Roof System and Roof-rainwater Utilization System) for urban greening and select ground-cover plants, which can adapt well to the drought tolerance in an extensive green roof system on 12 species. This study was carried out in order to suggest an experimental base in assessment of the Green Roof-rainwater Utilization System and selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. The drought-resistance of ground cover plants subjected to dry processing time were evaluated using relative water content on leaves, relative electric conductivity and chlorophyll content in 12 kinds of plants, and the relation between soil water content under drought stress. Drought resistance of the plants were subject to rooftop drought resistance treatments. The result showed that with the increase of stress time, the relative water content and chlorophyll content on leaves were in a downward trend while the relative electric conductivity was in an upward trend. Among the 12 species of ground cover plants, excluding Pulsatilla koreana, Ainsliaea acerifolia was selected for rooftop plants because they showed resistance to drought strongly and took adaptive ability. These results showed that drought tolerance of plants in Roof-rainwater Utilization System were stronger than the Sedum Box Roof System. Therefore, the Roof-rainwater Utilization System is good for plants. It helps them adapt well to the drought tolerance in rooftops and can be used for urban greening.

Hot Tolerance Assessment of Sedum spp. for Extensive Green Roof System (저관리·경량형 옥상녹화를 위한 세덤류의 내서성 평가)

  • Zhao, Hong-Xia;Son, Hee-Jun;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.180-189
    • /
    • 2012
  • This study was carried out to suggest an experiment based for selecting Sedum, which can adapt well with heat tolerance in extensive green roof system. The heat tolerance of Sedum subject to laboratory high temperature treatment and heat processing time were evaluated using electrolyte leakage, chlorophyll content and regrowth test, and the relation between soil water content and heat tolerance were researched. Logistic model of nonlinear regression analysis was used to evaluate the lethal temperatures that were predicted with the range of $45.0{\sim}48.1^{\circ}C$(soil water content 5%), $47.5{\sim}49.3^{\circ}C$(10%), $48.6{\sim}52.8^{\circ}C$(15%) in 6-hours high-temperature treatment. The higher the soil water content, the stronger the heat resistance property of Sedum. there is. The higher the treatment temperature, the lower the chlorophyll content, and the less the soil water content, the faster the chlorophyll decomposition. The order of hot-temperature resistance was S. reflexum>S. takevimense>S. middendorffianum>S. album>S. sieboldii>S. spurium when soil water content was 5%. The order of hot-temperature resistance was S. album>S. reflexum>S. spurium>S. takevimense>S. middendorffianum>S. sieboldii when soil water content was 15%. The more of soil water content, S. album, S. reflexum, S. spurium had stronger tolerant of hot temperature. These results were consistent with those from the regrowth test and the heat tolerance tested by electrolyte leakage evaluation.

Formation of Anodic Al Oxide Nanofibers on Al3104 Alloy Substrate in Pyrophosphoric Acid (피로인산 전해질에서 양극산화를 통한 알루미늄 3104 합금 나노섬유 산화물 형성)

  • Kim, Taewan;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2021
  • In this study, we investigated the formation of the metal oxide nanostructure by anodization of aluminum 3104H18 alloy. The anodization was performed in pyrophosphoric acid (H4P2O7) electrolyte. By the control of anodization condition such as concentration of electrolyte, anodization temperature and applied voltage, nanoporous or nanofiber structures were obtained. The optimal anodization condition to form nanofiber structures are 75 wt% of H4P2O7 at 30 V and 20℃. When anodization was performed at over 40 V, nanoporous structures were formed due to accelerated dissolution reaction rate of nanofiber structures or increasing thickness of channel wall.