• Title/Summary/Keyword: 전해부상

Search Result 18, Processing Time 0.028 seconds

A Study on the Treatment of Soil Flushing Effluent Using Electrofloatation : Effects of Electrolyte and pH (전기부상을 이용한 토양세정 유출수 처리에 관한 연구 : 전해질 및 pH의 영향)

  • 소정현;최상일;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.56-60
    • /
    • 2003
  • The optimal operation conditions of electrofloatation for oil-water separation of soil flushing effluent including electrolyte and pH were investigated. The reactor (200 ${\times}$ 10 ${\times}$ 15 cm) for the experiment was constructed by using acrylic plate. Diesel concentration was 1,000 mg/L in the 1 % mixed surfactant solution ($POE_5$: $POE_{14}$ 1: 1). Titanium coated electrode was used as cathode and stainless steel electrode as anode. Reaction time was 62 minutes (reaction time: 60 min., flotation time: 2 min.) and voltage was 6 V. The separation efficiency of electrofloatation was improved to 40% by electrolyte addition. Furthermore, NaCl (1N) added as electrolyte was showed enhanced efficiency compared to NaOH (1N). While, the effect of both NaCl and NaOH was sequentially increased in the range of 0.2∼1.0% (0.02∼0.1 M). The equilibrium time was found as 20 min. in the range of 0.4∼1.0% (0.04∼0.1M) for both of them.

An assessment on feasibility of flotation as a secondary clarifier of an activated sludge process (생물반응공정에 대한 고액분리조로서 부상공정의 적용성 평가)

  • Chung, Chong Min;Kim, Yun Jung;Cho, Kang Woo;Lee, Sang Hyup;Hong, Seok Won;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.551-559
    • /
    • 2008
  • An experimental study was carried out to evaluate the potential of flotation process for the secondary clarifier of an activated sludge process. Flotation techniques, applied in this study, include electrofloation (EF) which generated fine bubbles smaller than $35{\mu}m$ in average and diffuser flotation (DF) which generated fine bubbles smaller than $55{\mu}m$ in average. The batch experiments were done with activated sludge displaying various characteristics. It was shown that the efficiency of solids/liquid separation was reduced as the diluted sludge volume index ($DSVI_{30}$) of activated sludge increased. The dependency, however, gradually decreased as the gas to solids (G/S) ratio increased. Thickening efficiency of EF was more than 2~10 times and DF process was more than 1.5~5 times as compared with gravity sedimentation (GS). Stable sludge blanket was maintained regardless of sludge settleability when the G/S ratio was 0.019 in the EF. On the other hand, Serious deterioration in the sludge blanket was observed in the DF depends on G/S ratio and sludge settleability. And For EF and DF, the suspended solids concentration of effluent was not nearly influenced on settleability of activated sludge and more clear than GS. A biological nutrient removal (BNR) process, combined with EF as a secondary clarifier was operated for three months. The mean MLSS (mixed liquid suspended solids) concentration in the reactor and mean solids concentration of return sludge were estimated to be 5,340 mg/L and 16,770 mg/L, respectively. The water quality of effluent was considerably stable and low value was accomplished, that was, standard suspended solids concentration $0.07{\pm}0.51mg/L$ and standard turbidity $1.44{\pm}0.56NTU$. The EF could be applicable for enhancement of efficiency of activated sludge system as well as improvement of the water quality of effluent.

A Study on Bubbles Generated from Water Plasma for Application of DAF Process

  • Park, Jun-Seok;Yu, Seung-Yeol;Yu, Seung-Min;Hong, Eun-Jeong;Seok, Dong-Chan;Hong, Yong-Cheol;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.232-232
    • /
    • 2011
  • DAF는 기존 침전 공정에 비해 뛰어난 정수 품질과 빠른 처리 시간으로 차세대 정수 공정으로 각광 받고 있다. DAF는 기포 생성 방법에 따라 용존 공기 부상법, 분산 공기 부상법, 진공 부상법, 전해 부상법, 미생물학적 부상법 등이 있다. 이 중 가장 많이 쓰이는 방식은 용존 공기 부상법으로, 과포화 상태의 기체와 액체의 혼합액을 압력을 급격히 감소시켜 기포를 발생 시키는 방법이다. 이 방법은 기포의 발생은 많지만 장비의 크기가 거대하고 시설제조 비용이 많이 드는 단점이 있다. 수중에서 발생되는 플라즈마는 그 구조와 메카니즘에 따라 생성되는 버블의 양을 제어할 수 있음을 확인하였다. 모세관 형태의 전극을 이용한 수중 방전은 전원 공급 장치만 있다면 적은 공간으로도 효과적으로 기포를 생성 할 수 있기 때문에, 수중 방전을 이용하여 기포 발생 후 DAF에 적용 가능한지 알아보고자 한다. DAF공정에서 필요한 요인으로는 기포의 크기, 개수, 성분 물질 등이 있는데, 그 중 가장 핵심은 기포의 크기 이다. 그래서 간단한 전원 장치와 리액터 제작 후 방전에 최적화 된 전극으로 기포를 발생시켜 기포의 크기를 측정하였다. 기포의 크기는 전극의 직경과 방전공간의 비율에 따라 제어가 가능함을 확인하였고 평균 기포의 크기는 약 50 ${\mu}m$로서, DAF에 적용 할 수 있는 크기이다. 일반적으로 기포의 사이즈가 작을수록 입자 제거율이 높은데, 실제 DAF공정에서 사용되는 기포의 사이즈는 80 ${\mu}m$정도 이다. 따라서 개발된 기포 발생장치를 DAF 공정에 응용한다면 높은 효율을 가질 것으로 판단된다.

  • PDF

Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method (전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성)

  • Park, Minjeong;Choi, Younggyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

Sludge Thickening using Electro-Flotation in Water Treatment Plant (전해부상에 의한 상수 슬러지 농축효율)

  • Lee, Jun;Han, Mooyoung;Dockko, Seok;Park, Yonghyo;Kim, Tschungil;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation(DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process. because of high total solids and low moisture content in the sludge.

The Effect of Magnesium and Aluminium Ions on Zeta Potential of Bubbles (수중의 마그네슘과 알루미늄 이온이 기포의 제타전위에 미치는 영향)

  • Han, Moo-Young;Ahn, Hyun-Joo;Shin, Min-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.573-579
    • /
    • 2004
  • Electroflotation, which is used as an alternative to sedimentation, is a separation treatment process that uses small bubbles to remove low-density particulates. Making allowances for recent collision efficiency diagram based on trajectory analysis, it is necessary to tailor zeta potential of bubbles that collide with negatively charged particles. In this paper, the study was performed to investigate the effects of magnesium and aluminium ions on zeta potential of bubbles. And, it was studied to find out factors which could affect the positively charged bubbles. Consequently, zeta potential of bubbles increased both with higher concentration of metal ions and in the acidic pH value. And, a probable principle that explained the procedure of charge reversal could be a combined mechanism with both specific adsorption of hydroxylated species and laying down of hydroxide precipitate. It also depended on the metal ion concentration in the solution to display its capacity to control the bubble surface.

금속치환법의 공정변수에 따른 탄소나노튜브 표면의 Cu입자 석출 거동

  • Choe, Sun-Yeol;Kim, Jin-Uk;Jo, Gyu-Seop;Kim, Sang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.416-416
    • /
    • 2014
  • 탄소나노튜브(CNTs)의 비강도는 철합금에 비해 30~50배 높으며, 알루미늄 밀도($2.7g/cm^3$)보다 낮은 $1.3{\sim}1.4g/cm^3$의 값을 갖는 고강도 고경량의 탄소소재이다. 이러한 CNT를 금속기지에 복합화 하면 비강도가 매우 우수하고 고경량화 소재의 제조가 가능하다. 하지만, CNT는 반데르발스(Van der waals) 힘에 의해 서로 뭉쳐서 존재하며, 젖음성이 나쁘기 때문에 금속과 부상 분리되는 단점이 있다. 따라서, 이러한 문제점을 보완하기 위하여 무전해 도금법, 전해도금법 등으로 Cu, Ni등을 코팅하여 문제점을 해결하려는 연구가 진행되어 왔지만, 복합소재를 제조하기 위해 필요한 CNT를 대량으로 코팅하기엔 적합하지 않다. 본 연구에서는 CNT표면에 Cu를 대량으로 형성시킬 수 있는 시멘테이션법을 이용하여, 공정조건에 따른 CNT/Cu의 석출되는 형상 및 성분의 변화를 조사하였다.

  • PDF

Evaluation on Design Factors of Electrolytic Flotation Reactor by Measuring Polarization Curve (분극곡선 측정을 통한 전해부상조의 설계인자 평가)

  • Lim, Bong-Su;Jin, Jing-Zhu;Choi, Chan-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.244-250
    • /
    • 2007
  • This study was carried out to obtain the optimum design factors for an eletrolytric flotation reactor. When the effluent of the leachate treatment facility was treated under the condition of 10 volts, 30 minutes, at the Al-Al electrode system; COD removal efficiency was 45%, and total phosphorus removal efficiency was 98%. The high removal efficiency was caused by the fact that phosphate was removed by leaching $Al^{3+}$ from two electrodes. The leachate containing high ammonium nitrogen concentration was treated by a batch test under the condition of 60 minutes reaction time and added chloride ion; ammonium nitrogen removal efficiency was 89%. This high efficiency was affected by added chloride ion to wastewater. To find the optimum current density and voltage of the leachate containing chloride ion (ratio of $Cl^-/NH_4-N$ is 11) a electrochemical polarization curve was used. These values were found to be $4.5mA/cm^2$ and about 2.1 V, respectively. When C-Al electrode system was used at a batch test, the total nitrogen removal efficiency was increased by 1.8 to 3.3 times, compared to Al-Al electrode system due to high $Cl_2$ gas production.