• Title/Summary/Keyword: 전하불균형전이

Search Result 3, Processing Time 0.017 seconds

Crystallographic and Magnetic Properties of a Perovskite La1/3Sr2/3FeO2.96 (페롭스카이트 La1/3Sr2/3FeO2.96의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.167-171
    • /
    • 2005
  • Detailed aspects of the charge disproportionation (CD) transition for a polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ were studied with the X-ray diffraction, $M\ddot{o}ssbauer$ spectroscopy, and SQUID magnetometer. The crystal structure was found to be rhombohedral with a space group R/3c. The lattice parameters were $a_R=5.4874\;\AA,\;and\;a_R=60.07^{\circ}$, respectively. $M\ddot{o}ssbauer$ spectra were taken within a wide range of temperature from 4.2 K up to room temperature. In the low temperature region, the spectra were comprised of two superimposed sextets which originated from $Fe^{3+}\;and\;Fe^{5+}$, respectively. This was the antiferromagnetic mixed valence state produced by the charges disproportionated into two different species. In the high temperature region, however, only a singlet from $Fe^{3.6+}$ was observed, indicating that it was a paramagnetic averaged valence state. The CD transition occurred in the temperature range from 175 K to 200 K, in which the two phases coexisted. The origin for the CD transition was explained by the thermally generated fast hopping of electrons. Hysteresis loop showed that there existed a strong antiferromagnetic interaction among magnetic ions. As the temperature increased thru the CD transition temperature, it was very likely that the interaction between $Fe^{3+}\;and\;Fe^{5+}$ was replaced by a more stronger one.

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

[Mössbauer] Spectroscopic Study of La1/3Sr2/3FeO2.96 under the External Magnetic Field (산소결핍 페롭스카이트 La1/3Sr2/3FeO2.96의 외부 자기장 하에서의 Mössbauer분광학적 연구)

  • Yoon, Sung-Hyun;Jung, Jong-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.81-84
    • /
    • 2005
  • The origin for the charge disproportionation (CD) transition in polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ was examined using X-ray diffraction and the external field $M\ddot{o}ssbauer$ssbauer spectroscopy. In order to see how the external magnetic field affects the CD state above its transition temperature, an external magnetic field of up to 6 T was applied either parallel or perpendicular to the $\gamma-ray$ direction with the sample temperature fixed at 225 K, which was above the CD transition temperature. Without an external magnetic field, a completely paramagnetic singlet was obtained in the temperature range of the averaged valence state above the transition temperature, which was interpreted as coming from the average valence $Fe^{3.6+}$. In the longitudinal geometry, a magnetic Zeeman with its intensity ratio 3:0:1:1:0:3 is superimposed to the central singlet. In the transverse geometry, however, the central singlet disappears and only a magnetic component with its intensity ratio 3:4:1:1:4:3 emerges. The existence of a singlet is understood as an evidence of the fast electron-transfer among Fe ions. Since the singlet still exists under the magnetic field, the application of an external field has little effect on the conduction mechanism of hopping electrons.