• Title/Summary/Keyword: 전하밀도파

Search Result 2, Processing Time 0.016 seconds

Research on Changes in Short Circuit Current of C-Si Solar Cell by Charge Density Waves (전하밀도파 이론으로 결정질 태양전지의 입사각에 따른 단락전류밀도 변화 연구)

  • Seo, Il Won;Koo, Je Huan;Yun, Myoung Soo;Jo, Tae Hoon;Lee, Won Young;Cho, Guang Sup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • We measure solar currents transformed from quantum efficiency as a function of incident angles of solar lights. According to conventional models for solar cells, solar currents can be induced when electrons are separated into electrons and holes in the presence of incident solar lights. On the contrary, solar currents can be possible at the time when pinned charge density waves go beyond the pinning potential barrier under the influence of incident solar beams suggested by some authors. In this experiment, measured solar currents and our theory are in good correspondence to confirm the angle dependence of solar lights.

ARPES Study of Quasi-Two Dimensional CDW System CeTe2 (준이차원 전하밀도파 CeTe2의 각분해 광전자 분광 연구)

  • Kim, D.H.;Lee, H.J.;Kang, J.S.;Kim, H.D.;Min, B.H.;Kwon, Y.S.;Kim, J.W.;Min, B.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.173-177
    • /
    • 2010
  • The electronic structure of charge-density-wave (CDW) system $CeTe_2$ has been investigated by using angle-resolved photoemission spectroscopy (ARPES). The clearly dispersive band structures are observed in the measured ARPES spectra, indicating the good quality of the single-crystalline sample employed in this study. The four-fold symmetric patterns are observed in the constant energy (CE) mappings, indicating the $2{\times}2$ lattice deformation in the Te(1) sheets. The observed CE images are similar to those of $LaTe_2$, suggesting that Ce 4f states have the minor contribution to the CDW formation in $CeTe_2$. This study reveals that the carriers near the Fermi level should have mainly the Te(1) 5p and Ce 5d character, that the Te(1) 5p bands contribute to the CDW formation, and that the Ce 5d bands cross the Fermi level even in the CDW state.