• Title/Summary/Keyword: 전파균열

Search Result 508, Processing Time 0.029 seconds

Propagation Behavior of the Interface Crack Through a Hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, Eok-Seop;Yun, Hae-Ryong;Hwang, Si-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2823-2827
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (exited on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

3-D Analysis of Stress Distribution Around Micro Hole by F.E.M. (유한 요소법에 의한 미소 원공 주위의 응력 분포에 대한 3차원 해석)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1462-1471
    • /
    • 1991
  • 본 연구에서는 미소 결함주위에서 발생, 전파하는 균열들에 미치는 초기 결함 깊이와 상호 간섭 영향을 검토하기 위하여 기존 재료가 갖고 있는 결함이나 비금속 개 재물로 대신할 수 있다고 생각되는 미소 원공의 크기를 변화시킨 모델에 대해 유한 요 소법을 이용하여 3차원적으로 응력을 해석하였다. 실제 사용하고 있는 부재에 결함 들이 존재할 경우 응력장의 간섭으로 피로 균열 진전이 가속화됨으로 미소 원공 주위 의 응력 분포 및 미소 원공사이의 응력장의 간섭과 미소 원공에서 발생, 전파하는 표 면 균열의 응력 확대 계수에 미치는 영향에 대하여 비교검토 하였다.

Prediction and Application of Fatigue Life on Characteristics of Fatigue Crack Propagation of Thin Sheet Alloy (박판합금재료의 피로균열 전파특성에 대한 피로수명예측과 활용)

  • Lee, Ouk-Sub;Kim, Seung-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.103-109
    • /
    • 2007
  • In fatigue life prediction, it is important that fatigue life is affected by crack closure phenomenon in thin sheet Al alloy. In this research, we attempt to (1)analyze the characteristics of fatigue crack propagation in constant loading condition for thin sheet Al 2024-T3 alloy which is generally used in transportation structures, (2)identify the crack closure phenomenon in thin sheet comparing experimental results of thin and thick sheet specimen under same fatigue loading condition. In using the fatigue related material constants from these fatigue crack propagation analysis, we attempt to (3)operate the fatigue life estimating process with considering crack closure phenomenon and (4)analyze the experimental and prediction results of fatigue life in thin sheet Al alloy.

A Study on Fatigue Crack Growth Behavior of Steel Using AE (AE을 이용한 강의 피로균열전파 거동에 관한 연구)

  • Chung, K.Y.;Kim, S.J.;Kim, Y.S.;Oh, M.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.50-56
    • /
    • 2001
  • In this study, the effect of specimen thickness and stress ratio on fatigue crack growth in S45C steel was investigated. Acoustic emission was monitored during the fatigue crack growth test. Both crack closure and AE technique were used in assessing fatigue crack growth behavior. Constant amplitude loading tests were performed on CT type specimen with three different thicknesses and stress ratios. Crack closure was investigated to explain the influence of specimen thickness and stress ratio on the fatigue crack growth in the second growth region. The crack closure effect was decreased with specimen thickness and stress ratio.

  • PDF

Propagation behavior of the interface crack through a hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, O.S.;Yin, H.L.;Hwang, S.W.;Byun, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.127-131
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (existed on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

  • PDF

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

The Behavior of Fatigue Crack Propagation by Position of Indentations (압흔가공위치에 따른 피로균열 전파거동)

  • 송삼홍;최진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.28-32
    • /
    • 1995
  • This effective way for repairing a fatigue crack is making indetations around fatigue crack tip. In this paper, we performed fatigue test to investigate the optimal position of the indentations, and observed crack opening behavior at the same time. The indentation positions of specimens were on the crack tip, front and back of the crack tip. The results of the experiment showed taht it was veryeffective way to increase fatigue life that making indentations on the crack tip, and it was the optimal position that making indentations on the crack tip.

  • PDF

항공기용 하이브리드 복합재료의 섬유배향각에 따른 피로균열전파와 층간분리 거동

  • 김태수;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.76-76
    • /
    • 2004
  • 하이브리드 복합재료 중에서 적충형태의 Al/GFRP는 단일재 알루미늄에 비해 피로특성, 비강도, 비강성 등이 매우 우수하여 Fig. 1과 같이 항공기 주익 구조에 주로 적용된다. 그러나 이러한 Al/GFRP 적층재 역시 장시간에 걸쳐 비행하중을 받게 되면 다양한 형태의 파손이 발생할 수 있다. 이 중 알루미늄층과 섬유층 사이에서 발생하는 층간분리는 Al/GFRP 적층재의 대표적인 피로파손 형태이며, 현재 이러한 파손은 다 방면으로 연구되고 있다.(중략)

  • PDF

A Study On the Factors that Affect Fatigue Crack Growth Rate in Steels - Specimen Thickness Effect - (강재의 피로균열전파율에 미치는 영향인자에 관한 연구)

  • Kim, Seon-Jin;Nam, Ki-Woo;Hong, Jin-Pyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.58-65
    • /
    • 1999
  • The effect of specimen thickness on fatigue crack growth rate was studied. The objective of the present study is to investigate the effect of specimen thickness on the fatigue crack growth behavior at various stress intensity factor ranges and also the variation of material restance to fatigue crack growth. The fatigue crack growth resistance was treated as a spatial stochastic process, which varies randomly on the crack path, Compact tension specimens with a LT orientation for structural steel were used. All testing was done at a constant stress intensity level. The experimental data were analyzed for the size effect to determine the Weibull distributions of the material resistance.

  • PDF

A Prediction of Crack Propagation Rate under Random Loading (랜덤하중에서의 균열전파속도 추정법에 관한 연구)

  • 표동근;안태환
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF