전통적으로 신문 매체는 국내외에서 발생하는 사건들을 살피는 데에 가장 적합한 매체이다. 최근에는 정보통신 기술의 발달로 온라인 뉴스 매체가 다양하게 등장하면서 주변에서 일어나는 사건들에 대한 보도가 크게 증가하였고, 이것은 독자들에게 많은 양의 정보를 보다 빠르고 편리하게 접할 기회를 제공함과 동시에 감당할 수 없는 많은 양의 정보소비라는 문제점도 제공하고 있다. 본 연구에서는 방대한 양의 뉴스기사로부터 데이터를 추출하여 주요 사건을 감지하고, 사건들 간의 관련성을 판단하여 사건 네트워크를 구축함으로써 독자들에게 현시적이고 요약적인 사건정보를 제공하는 기법을 제안하는 것을 목적으로 한다. 이를 위해 2016년 3월에서 2017년 3월까지의 한국 정치 및 사회 기사를 수집하였고, 전처리과정에서 NPMI와 Word2Vec 기법을 활용하여 고유명사 및 합성명사와 이형동의어 추출의 정확성을 높였다. 그리고 LDA 토픽 모델링을 실시하여 날짜별로 주제 분포를 계산하고 주제 분포의 최고점을 찾아 사건을 탐지하는 데 사용하였다. 또한 사건 네트워크를 구축하기 위해 탐지된 사건들 간의 관련성을 측정을 위하여 두 사건이 같은 뉴스 기사에 동시에 등장할수록 서로 더 연관이 있을 것이라는 가정을 바탕으로 코사인 유사도를 확장하여 관련성 점수를 계산하는데 사용하였다. 최종적으로 각 사건은 각의 정점으로, 그리고 사건 간의 관련성 점수는 정점들을 잇는 간선으로 설정하여 사건 네트워크를 구축하였다. 본 연구에서 제시한 사건 네트워크는 1년간 한국에서 발생했던 정치 및 사회 분야의 주요 사건들이 시간 순으로 정렬되었고, 이와 동시에 특정 사건이 어떤 사건과 관련이 있는지 파악하는데 도움을 주었다. 또한 일련의 사건들의 시발점이 되는 사건이 무엇이었는가도 확인이 가능하였다. 본 연구는 텍스트 전처리 과정에서 다양한 텍스트 마이닝 기법과 새로이 주목받고 있는 Word2vec 기법을 적용하여 봄으로써 기존의 한글 텍스트 분석에서 어려움을 겪고 있었던 고유명사 및 합성명사 추출과 이형동의어의 정확도를 높였다는 것에서 학문적 의의를 찾을 수 있다. 그리고, LDA 토픽 모델링을 활용하기에 방대한 양의 데이터를 쉽게 분석 가능하다는 것과 기존의 사건 탐지에서는 파악하기 어려웠던 사건 간 관련성을 주제 동시출현을 통해 파악할 수 있다는 점에서 기존의 사건 탐지 방법과 차별화된다.
인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
연구목적(硏究目的) : 한의학(韓醫學)의 최근(最近)의 연구(硏究) 경향에 있어서 많은 시도와 다양한 접근이 이루어지고 있음을 우리는 알 수 있다. 그 중 형상의학(形象醫學)이라는 분야는 기존 한의학(韓醫學)의 전통적(傳統的) 이론(理論)을 근거로 하고 다양한 임상적 지식을 결합하여 이루어진 것으로서 의학적(醫學的) 진단(診斷)과 치료(治療), 예후(豫後) 그리고 예방적(豫防的) 차원(次元)에서 유용하게 응용(應用)되고 있다. 이러한 형상의학(形象醫學)은 다양한 연구와 임상적 지식, 그리고 깊이 있는 한의학(韓醫學) 이론 (理論)의 이해를 필요로 하고 있으며 그 의학적(醫學的) 가치는 더욱 증가하고 있다. 사상의학(四象醫學)에서도 이와 같은 형상의학(形象醫學)적인 내용이 중요하게 다루어지고 있는데, 이는 사실상 사상체질변증(四象體質辯證)이라는 사상의학(四象醫學)의 주요 과제와 맞물려 있는 내용이기도 하다. 사상의학(四象醫學)에서의 형상적(形象的)인 개념이 비교적 종합적으로 제시되어 있는 부분은 <변증론(辦證論)>이라 할 수 있는데 <변증론(辯證論)>에는 태소음양인(太小陰陽人)의 네 가지 체질(體質)에 따른 체형기상(體形氣象)과 용모사기(容貌詞氣) 등이 설명되어 있다. 그러나 보다 원리적인 설명은 <변증론(辯證論)>에는 생략되어 있다. 사상의학(四象醫學)을 관통하고 있는 근본 정신은 사상정신(四象精神) 즉 사심신물(事心身物)이라는 사물류적(四物類的) 요약정신(要約精神)이다. 따라서 사상의학(四象醫學)의 형상(形象) 에 관한 부분도 기본적인 이론(理論)이나 정신(精神)에 입각한 연구(硏究)가 선행되는 것이 바람직하다 할 수 있다. 이에 저자(著者)는 사상의학(四象醫學)의 원리론(原理論)이라 할 수 있는 <성명론(性命論)>에서 <직부록(職腑論)>까지의 고찰(考察)을 시도하여 이제마 의 형상관(形象觀)이 어떻게 표현되고 있으며 사심신물(事心身物)의 정신(精神)에 입각하여 이들이 어떠한 관계를 가지고 있는지 살펴보고자 한다. 연구방법(硏究方法) : 먼저 사상(四象)의 개념에 대한 기원(起源)을 살펴보고 <성명론(性命論>, <사단론(四端論)>, <확충론(擴充論)>, <직부론(職腑服論)>에 나타난 형상(形象)과 관련 있는 대상을 정리하였으며 고찰(考察)을 통해 그들이 가지는 사심신물(事心身物)이라는 사상정신(四象精神)에 입각한 관계성을 알아보고자 하였다. 그리고 그러한 형상적(形象的) 대상들을 사상구조(四象構造)로 분류하여 사상의학(四象醫學)의 형상적(形象的) 대상들을 사상정신(四象精神) 속에서 전체적으로 이해(理解)하고자 하였다. 추가적(追加的)으로 오행적(五行的) 관점(觀點)에서의 인체(人體) 형상(形象)과 사상적(思想的) 관점(觀點)에서의 인체(人體) 형상(形象)을 비교(比較)함으로써 사상의학(四象醫學) 형상관(形象觀)의 특징(特徵)을 <변증론(辨證論)>을 비롯한 기존(旣存)의 연구(硏究) 자료(資料)를 바탕으로 살펴보았다. 연구결과(硏究結果) 형상적(形象的) 대상으로서 제시된 각 부위는 모두 사심신물(事心身物)의 정신(精神) 속에서 분류되어 있고 이를 바탕으로 일관적으로 설명되고 있다. 이들 형상(形象)은 오행적(五行的) 관점(觀點)의 형상(形象)과 달리 기능적(機能的) 측면이 중시되어 있는데 이는 단순한 형상(形象)의 모습만이 아닌 수행하는 기능이나, 그 형상(形象)을 통해 드러나는 심욕(心慾)을 관찰하는 대상으로서의 형상(形象)이 중시됨을 의미한다. 내경의학(內經醫學) 즉 오행적(五行的) 관점(觀點)에서의 인체(人體) 형상(形象)은 오직배속(五職配屬)이 기본이 되어 있으며, 형상(形象)의 관찰을 통해 직부(職服)의 허실(虛實)이나 병(病)의 상태를 알아내는 진단적(診斷的) 성격의 형상(形象)인 반면 이제마의 사상의학(四象醫學)에서의 형상(形象)은 직부(職服)의 대소(大小), 성정(性情), 심욕(心慾) 등을 모두 반영하는 것으로서 사상체질변증적(四象體質辯證的) 성격을 갖고 있는 형상(形象)이다. 사상의학(四象醫學)에서의 형상(形象)들을 다시 군(群)으로 묶어 사적(事的)인 형상군(形象群)(이목비구(耳目鼻口) 등), 물적(物的)인 형상군(形象群)(폐비간신(肺脾肝腎) 등), 심적(心的)인 형상군(形象群)(함억제복), 신적(身的)인 형상군(形象群)(두견요둔(頭肩腰臀))으로 분류할 수 있다. 이때 사물적(事物的)인 형상(形象)은 이목비구(耳目鼻口)와 폐비간신(肺脾肝腎) 등 천품적(天稟的)으로 타고난 편차를 드러내는 정적(靜的)인 형상(形象)이라 할 수 있고 심신적(心身的)인 형상(形象)은 함억제복과 두견요둔(頭肩腰臀) 등 심욕(心慾)을 반영하는 동적(動的)인 형상(形象)이라 할 수 있다. <변증론(辯證論)>에 제시되고 있는 체형기상(體形氣象), 성질재간(性質材幹), 용막사기(容貌詞氣) 등은 사물적(事物的)인 형상(形象)으로 살펴볼 수 있다. 따라서 이것 이외에 <성명론(性命論)>에서 <직부론(鐵腑論)>까지의 원리론적(原理論的)인 과정에서 제시된 심욕(心慾)을 관찰하는 함억제복과 두견요둔(頭肩腰臀)의 형상에 대한 고찰이 필요하다고 하겠다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
거대한 데이터베이스로부터 중요하고 의미 있는 정보를 찾아내기 위해 데이터 마이닝 기법들이 사용되며, 패턴 마이닝은 이러한 데이터 마이닝을 위한 중요한 기법 중에 하나이다. 패턴 마이닝은 거대 데이터베이스로부터 유용한 패턴을 찾아내는 기법이며, 패턴 마이닝 분야 중에 하나인 빈발 패턴 마이닝은 데이터베이스에서 최소 임계치 이상의 빈도수를 가지는 빈발 패턴을 마이닝 한다. 전통적인 빈발 패턴 마이닝은 전체 데이터베이스에 대한 단일 최소 임계치를 기반으로 중요 빈발 패턴을 마이닝 한다. 단일 최소 임계치 모델은 데이터베이스 내 모든 아이템이 동일한 특성을 가진다고 암묵적으로 가정한다. 그러나 실제 응용에서는 각 아이템들이 개별적인 특성을 가지고 있을 수 있으며, 따라서 이를 반영한 패턴 마이닝 기법이 요구된다. 데이터베이스 내 아이템들의 이러한 특성이 반영되지 않은 빈발 패턴 마이닝 모델에서, 중요한 희귀 아이템이 포함된 패턴을 마이닝 하기 위해서는 낮은 최소 임계치를 설정해야 한다. 그러나 너무 낮은 최소 임계치는 의미 없는 아이템들을 포함하는 수많은 패턴을 야기한다. 반대로 높은 최소 임계치는 희귀 아이템이 포함된 패턴을 마이닝 하지 못하는 희귀 아이템 문제라 불리는 딜레마가 발생한다. 이러한 문제의 해결을 위한 초기 연구들은 아이템 빈도수에 따라 데이터를 몇 개의 블록으로 분할하거나 관련 희귀 아이템들을 하나의 그룹으로 만드는 방법을 사용한 근사적 접근법을 제안하였다. 그러나 이러한 기법들은 근사적 방법의 적용에 의해 모든 희귀 패턴을 포함한 빈발 패턴을 마이닝 하지 못한다. 다중 최소 임계치를 고려한 패턴 마이닝 모델은 아이템들의 개별적인 특성을 반영하여 희귀 아이템 문제를 해결하기 위해 제안되었다. 다중 최소 임계치 기반의 빈발 패턴 마이닝 모델에서 각 아이템은 MIS (Minimum Item Support)라고 불리는 개별 최소 임계치를 가지며, 아이템들의 데이터베이스 내 빈도수를 기반으로 계산된다. 다중 최소 임계치 모델은 MIS를 통해 수많은 의미 없는 패턴을 생성하지 않고도 손실 없이 모든 희귀 빈발 패턴을 찾아낸다. 한편, 빈발 패턴을 마이닝 하는 과정에서 후보 패턴들이 생성되며, 단일 최소 임계치 모델에서는 각 후보 패턴의 빈도수가 유일한 최소 임계치와 비교된다. 따라서, 희귀 아이템 문제가 발생할 뿐만 아니라 후보 패턴을 구성하는 아이템들의 특성이 고려되지 않는다. 다중 최소 임계치 모델에서는 이 문제를 다루기 위해 후보 패턴을 구성하는 아이템들의 MIS 값 중에서 가장 작은 MIS 값을 해당 후보 패턴의 최소 임계치로 설정하여 패턴 내 아이템들의 특성을 반영한다. 이를 적용하여 효율적으로 희귀 빈발 패턴을 마이닝 하기 위해 트리 구조 기반의 알고리즘은 빈도수 내림차순으로 트리 내 아이템들을 정렬하는 단일 최소 임계치 모델과는 달리 MIS 내림차순으로 아이템들을 정렬하여 마이닝을 수행한다. 본 논문에서는 다중 최소 임계치 기반의 빈발 패턴 마이닝 알고리즘에 대한 특성을 살펴보고, 일반 단일 임계치 기반 알고리즘과의 성능평가를 수행한다. 성능평가는 실행 속도, 메모리 사용량, 그리고 확장성의 관점에서 수행된다. 성능평가 결과, 다중 최소 임계치 기반의 빈발 패턴 마이닝 알고리즘은 희귀 빈발 패턴을 포함한 모든 빈발 패턴을 단일 임계치 기반의 빈발 패턴 마이닝 알고리즘보다 더 빠른 속도로 마이닝 하였으며, 각 아이템의 최소 임계치 정보를 위한 추가적인 메모리를 필요로 하였다. 또한, 비교 알고리즘들은 좋은 확장성 결과를 보였다.
본 연구는 고수부지에 조성한 여과습지의 초기운영단계 질소제거율을 분석하였다. 조사기간 처리수의 평균수온은 $17.1^{\circ}C$이었고, 평균 pH는 7.1이었으며, 갈대의 평균 N흡수량은 $69.31\;N\;mg/m^2/day$였다. 유입수와 유출수의 평균 $NO_3-N$ 농도는 각각 3.46, 2.23 mg/L이었으며, 여과습지의 $NO_3-N$ 평균제거율은 $195.58\;mg/m^2/day$였다. 유입수와 유출수의 평균 $NH_3-N$ 농도는 각각 0.92, 0.58 mg/L이었으며, $NH_3-N$ 평균 제거율은 $53.65\;mg/m^2/day$를 보였다. 유입수와 유출수의 평균 T-N 농도는 각각 10.24, 6.32 mg/L 였으며, T-N 평균제거율은 $628.44\;mg/m^2/day$를 보였으며, 제거량 기준으로 T-N 평균제거율은 약 39%를 나타냈다. 시스템이 초기 운영단계인 점을 고려하면 T-N제거 수준은 비교적 양호한 편이다. 여과습지의 $7{\sim}10$월의 수온이 암모니아화, 질산화, 탈질화에 비교적 적합한 온도를 유지하였고, 매질사이의 공극에 입자성 유기태 질소가 고정되고, 매질표면에 형성된 미생물막에 유기태 질소가 흡착되어 분해되고, 유입수가 원활히 시스템을 흐른 것이 질소제거의 주요 원인으로 사료된다. $2{\sim}3$년 후 갈대가 정상적으로 성장하여 뿌리와 근권이 발달하고, 갈대의 잔재물로부터 유기쇄설물이 형성되어 탈질화에 필요한 탄소공급원이 제공되면, 시스템의 질소 처리율이 높아질 것으로 생각된다. 실험결과 고수부지를 활용한 수질정화 여과습지는 오염하천수에 함유된 질소를 줄일 수 있는 방안이 될 수 있을 것으로 사료된다.PL특성은 상온에서도 눈으로 보일 만큼 우수한 발광 특성을 보였으며, 기판 bias전압이 증 가함에 따라 PL peak 위치가 청색으로 편이하는 경향을 보였다. 이러한 발광 세기의 변화 는 $V_s$=0V부터 $V_s$=200V까지는 기판의 bias전압이 증가함에 따라 상대적으로 박막의 표면에 충돌하는 이온에너지의 감소로 인해 a-C:H박막내에 비발광 중심으로 작용하는 dangling bond가 감소하여 발광의 세기가 증가하였으며 $V_s$=300V이상에서는 박막내의 수소 함유량이 증가함에 따라 dangling bond수는 감소하나 발광 중심으로 작용하는 탄소간의 $\pi$결합을 포 함하는 cluster가 줄어들어 PL세기가 감소한 것으로 생각된다.1례, 폐동 맥: 1례)이 4례, 2주 이상의 지속적 흉관배액이 4례, 유미흉이 3례, 출혈에 의한 재수술이 3례, 기타 급성 신 부전, 종격동염, 횡경막신경 마비가 각각 2례씩 있었으며, 중복치환술을 받은 환자들과 전통적 술식으로 수 술받은 환자에서 술후 합병증의 차이는 없었다. 65명의 환자를 평균 54$\pm$49개월(0~177개월)간 추적관찰하였 으며, 수술 초기에 사망한 환자는 13명으로 20.0%(13/65)의 수술사망율을 보였으며 3명의 환자가 추적기간중 사망하여 24.6%(16/65)의 전체사망율을 보였다. 중복치환술을 받은 환자의 수술사망율은 33.3%(4/12)였다. 술 후 1년, 5년, 10년 누적생존율은 각각 75.0$\pm$5.6%, 75.0$\pm$5.6%, 69.2$\pm$7.6%였다. 가장 흔한 사망원인으로는 술 후 저심박출증후군으로 8례였으며 삼첨판막 폐쇄부전이 심해져 심부전으로 사망한 경우도 5례로 사망의 중 요 원인이었다. 결론 저자들은 본 연구를
연구배경 : 특발성 폐섬유화증에서는 폐암이 호발하는 것으로 알려져 있다. 그동안 이러한 폐암의 호발은 '반혼암'이라는 개념으로 설명되어 왔고 전통적으로는 조직형 중 선암이 가장 많다고 알려져 있었으나 최근에는 편평상피암이 가장 많다는 보고도 있어 논란이 있었다. 그동안의 대부분 연구에서 대상 환자들은 높은 흡연력을 가진 흡연자들이었으나 이 점을 고려하여 섬유화와 연관된 폐암만을 따로 분리하여 분석한 연구는 없었다. 본 연구에서는 특발성 폐섬유화증에 발생한 폐암 중 "섬유화와 연관된 폐암"과 "섬유화와 무관한 폐암"을 나누어 보고 얼마나 많은 폐암이 섬유화와 연관하여 발생하는가, 그리고 섬유화와 연관된 폐암에서는 어떤 조직형이 가장 흔한가를 알아보고자 하였다. 방법 : 1988년 1월부터 1998년 7월 사이에 서울대학교 병원에서 특발성 폐섬유화증에 병발된 폐암으로 진단 받은 환자들을 대상으로 하여 후향적으로 연구를 하였다. 흡연력, 폐암과 특발성 폐섬유화증의 진단 시기, 폐암의 조직형, 폐암의 위치를 조사하였는데 특히 폐암이 섬유화가 진행된 폐실질에서 발생하였는지 여부를 조사하였다. 특발성 폐섬유화증에서 발생하는 폐암중 섬유화와 직접 관련되어 발생하는 폐암이 얼마나 되는지 평가하고자 폐암의 발생 위치에 섬유화가 동반 되어 있는가에 따라 폐암을 분류하려고 시도하였다. 즉, 흉부 전산화 단층 촬영을 검토하여 폐암이 섬유화 병변이 있는 위치에 발생한 경우를 "섬유화와 연관된 폐암"으로, 섬유화 병변과 무관한 위치에 발생한 폐암을 "섬유화와 무관한 폐암"으로 정의하였다. 특발성 폐섬유화증 환자에서 발생한 폐암의 조직형 빈도를 비교하기 위한 대조군으로 1997년도 한국중앙암등록사업 연례보고서 중 폐암의 조직형 분포를 사용하였다. 결과 : 57명의 환자들(남자 54명, 여자 3명)이 대상이 되었다. 특발성 폐섬유화증으로 추적 관찰 중 폐암을 진단 받은 환자가 11%인 6명이었고 나머지 환자들은 폐암과 특발성 폐섬유화증을 동시에 진단받았다. 94.2%인 49명이 흡연자였고 평균 흡연량 47.1$\pm$21.9갑년으로 높은 흡연율을 보였다. 폐암의 위치와 섬유화와의 연관성에 따라 분류하였을 때 "섬유화와 연관된 폐암"이 42명(80.8%), "섬유화와 무관한 폐암"이 10명(19.2%) 이었으며 섬유화와 무관한 위치에 발생한 폐암은 섬유화 병변으로 인해 발생한 반흔 암이 아닌 흡연 등에 연관된 폐암으로 생각되었다. 폐암의 조직형은 전체적으로는 편평상피암이 가장 많고 한국중앙암등록사업 연례보고서 결과와 차이가 없었으나 섬유화와 연관된 폐암만을 따로 살펴 보았을 때에는 선암이 42.9%로 가장 흔한 조직형이었으며 섬유화와 무관한 폐암과는 조직형의 분포에 유의한 차이가 있었다. 결론 : 특발성 폐섬유화증과 병발된 폐암 환자의 81%는 섬유화가 진행된 부위에 폐암이 발생하여 섬유화와 연관된 폐암 발생이 인정되었으나 19%는 섬유화와 무관하게 흡연 등의 인자에 의해 폐암이 발행한 것으로 판단되었다. 전체적으로는 편평 상피암이 가장 많았으나 섬유화와 연관된 폐암만을 대상으로 하였을 때는 선암이 가장 흔한 조직형이었다.
기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.
전통적으로 심근 생존능을 식별하고 심근 관류를 정확히 평가하기 위한 도구로 핵의학영상이 이용되고 있으나 경색영역을 정의하기에는 어려움이 있다. 이에 본 연구에서는 극성지도의 분포를 분석하여 특성에 맞는 적응적 임계값을 이용하여 심근경색 모델을 정량적으로 평가하고자 하였다. 쥐 심근경색 모델은 왼쪽 관상동맥을 결찰시켜 제작하였다. 소동물PET 영상은 37 MBq $^{18}F$-FDG를 쥐의 꼬리정맥에 주사한 후 60분 섭취 후 Siemens Inveon SPECT/PET 스캐너를 이용하여 20분 동안 ECG 신호와 함께 획득하였고, OSEM 2D 알고리즘을 이용하여 재구성하였다. PET 영상의 심근 극성지도는 Siemens QGS 소프트웨어에 적합한 형식으로 변환 후 자동으로 심근 벽을 설정하여 작성하였다. 심근경색영역의 기준데이터는 TTC 염색으로 설정하였으며 전체 좌심실대비 염색된 영역의 백분율로 획득하였다. 최적의 임계값 설정을 위해 절대치 설정 방법, Otsu 알고리즘, 다중가우시안혼합모델(Multi Gaussian mixture model, MGMM)을 이용하여 평가하였다. 절대치 설정 방법은 10~90%까지 10%단위로 미리 정의 된 임계값을 이용하였고, Otsu 알고리즘은 영상 내에서 두 군집의 분산을 최대로 하는 임계값으로 설정하였다. MGMM 방법은 영상의 화소 강도를 분석하여 여러 개의 가우시안 분포함수(MGMM2, $\cdots$ MGMM4)로 반복 수행하여 최적의 가우시안 분포를 구하여 적응적 임계값을 설정하였다. 극성지도 평가지표는 각각의 알고리즘에서 측정된 임계값을 이용하여 이진화하고 전체 극성지도와 경색영역의 백분율로 획득한 후, TTC 염색으로 획득된 기준데이터와의 차이를 비교하였다. 그 차이는 절대치 방법의 20%에서 $7.04{\pm}3.44%$, 30%에서 $3.87{\pm}2.09%$, 40%에서 $2.15{\pm}2.07%$이었다. Otsu 방법은 $3.56{\pm}4.16%$이었으며 MGMM 방법은 $2.29{\pm}1.94%$이었다. 소동물 PET 극성지도에서는 30% 임계값이 조직학적 데이터와 비교하여 가장 작은 차이를 보였다. 그러나 TTC 염색으로 측정한 크기가 10% 이하에서는 MGMM 방법이 절대치 방법보다 작은 차이를 보였다(MGMM: 0.006%, 절대치방법: 0.59%). 이 연구에서는 심근경색 모델 평가를 위하여 생체영상 극성지도에서 다중가우시안혼합모델을 이용하여 평가하고자 하였다. MGMM은 사용자의 선택 없이도 자동적으로 영상 특성을 고려하여 적응적 임계값을 찾아주는 방법으로 극성지도에서 심근경색을 평가하는데 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.