• Title/Summary/Keyword: 전통초가삼간

Search Result 5, Processing Time 0.02 seconds

A Test on the Aseismic Capacity of a Traditional Three-bay-straw-roof House(I) : Rock Site Condition (전통 초가삼간 가옥의 내진성능 평가 실험(I) : 암반지반 조건)

  • 서정문;최인길;전영선;이종림;신재철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.11-20
    • /
    • 1997
  • The aseismic capacity of a traditional three-bay-straw-roof wooden house for rock site condition is quantitatively estimated. One 1/4 scale model was tested for the Nahanni Earthquake with peak ground accelerations from 0.1g to 0.6g. The natural frequency of the wooden house in elastic range is 1.66 Hz and 2.15 Hz in longitudinal and transversal direction, respectively. Damping ratio of the house in elastic range is 7%. The horizontal acceleration response of the house is significantly reduced compared with the input motion due to the nonlinear inelastic characteristics of the Sagae-machum joint of the frame. The traditional wooden house has high aseismic capacity in the rock site condition where high frequency contents of motion are predominant.

  • PDF

Hysteretic Characteristics of Wooden Frames of Three-Bay-Straw-Roof House under Lateral Cyclic Load (수평 교번하중에 대한 초가삼간 목조 프레임의 이력특성 평가)

  • 서정문;최인길;전영선;이종림;신재철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.21-27
    • /
    • 1997
  • In this paper, the hysteretic characteristics of traditional wooden house frame,which is fabricated by Sagaemachum, under cyclic lateral load are presented. Full scale frame models are used in the tests. The skeleton curves of traditional wooden frame are quite different from those of wooden frames which are fabricated using nails or bracings. The equivalent viscous damping ratios of the frame system are about 27% and 13% for ordinary and high-column frames, respectively. The nonlinear hysteretic characteristics of the frame is modeled by the so called Modified Double Target model.

  • PDF

A Test on the Aseismic capacity of a Traditional Three-bay-straw-roof House(II): Soil Site Condition (전통 초가삼간 가옥의 내진성능 평가 실험 (II): 연약지반 조건)

  • 서정문;최인길;전영선;이종림;신재철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • The aseismic capacity of a traditional three-bay-straw-roof wooden house for soft soil site condition is quantitatively estimated. One 1/4 scale model was tested for the Imperial Valley Earthquake up to failure. The natural frequency of the wooden house measured in elastic range is 1.66 Hz and 1.76 Hz in the longitudinal and transversal direction, respectively. Damping ratio of the house measured in elastic range is 7%. The peak horizontal acceleration response of the house was reduced compared with input motion due to the nonlinear inelastic characteristics of the wooden frame. The horizontal displacement response was significantly increased as the level of input motion was increased. The model was collapsed at 0.25g due to the low frequency contents of the input motion. The results of nonlinear seismic analysis were compared with the test results.

  • PDF

Experimental Study on the Seismic Response Characteristics of a Traditional Three-bay-straw-roof House (전통 초가삼간 가옥의 지진응답특성 실험)

  • 서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.185-192
    • /
    • 1997
  • Many uncertainties are found in the evaluation of historical eatrhquake records. The seismic response characteristics of a three-bay-straw-roof house which is a typical from of residence in ancient period is quantitatively estimated. Two 1:4 scaled models are used in the test Real earthquake time histories for rock and competent soil conditions are used.

  • PDF

Estmation of Magnitude of Historical Earthquakes Considering Earthquake Characteristics and Aging of a House (지진특성 및 가옥의 노후도를 고려한 역사지진의 지진규모 추정)

  • 서정문;최인길
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • The magnitudes of historical earthquake records related with house collapses are estimated considering the magnitude, epicentral distance, soil condition and aging of a house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km-350 km and hard and soft soil condition were generated. Nonlinear dynamic analyses were performed for a traditional three-bay-straw-roof house. The aging effect of the house was modeled as such that the lateral loading capacity of wooden frames represented by hysteretic stiffness was decreased linearly with time. The house was idealized by one degree-of-freedom lumped mass model and the nonlinear characteristics of wooden frames were modeled by the Modified Double-Target mode. For far field earthquakes, minor damages were identified regardless of magnitude, soil condition and aging of the house. For intermediate field earthquake, earthquake magnitude greater than 6.5 caused severe damages in soil sites. For near field earthquake, severe damages occurred for magnitude greater than 6.5 regardless of soil condition and aging of the house. It is estimated that the magnitude of historical earthquakes is about 6.2. An empirical equation of magnitude-intensity relationship suitable to Korea is suggested.

  • PDF