• Title/Summary/Keyword: 전체크리프

Search Result 26, Processing Time 0.026 seconds

The Suggestion of Nonlinear 4-Parameters Model for Predicting Creep Deformation of Concrete (콘크리트 크리프 변형 예측을 위한 비선형 4-매개변수 모델의 제안)

  • Lee, Chang Soo;Kim, Hyeon Kyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.45-54
    • /
    • 2006
  • To obtain realistic stress-strain relation in concrete, it is necessary to improve the constitutive model for creep and shrinkage of concrete. This study is made up with predicting model of creep using rheological approach and mathematical development which is solution for phenomenon of concrete creep. Long-term deformation components are combined based on traditional 4-parameters model. Creep deformation is obtained adequately using 4-parameters determined by considering aging effect and microprestress among gels. And coefficient of effective viscosity is able to represent both basic creep and total creep included drying creep. This study attempt to establish mathematical model considering effects of aging, hydration, and variations of pore humidity. It can predict both basic creep and total creep. Values of result between prediction and experiment have greater than correlation factor 99%. Additionally experimental results report bad consentaneity with highway design specification adopting FIB MC 90. Rather than those are similar to FIB MC 90 rev.99.

Creep Behaviour of Red Shale in the Haman Formation by Multi Stage Loading Test (다단계 재하시험에 의한 함안층 적색 셰일의 크리프특성)

  • Cho, Lae-Hun;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.165-175
    • /
    • 2009
  • This study is concerned with creep characteristics of red shale in the Haman Formation by the single stage and multi stage loading tests. Creep constants in the Griggs's experiential equation, ${\epsilon}_t$= a+$b{\cdot}log$ t + $c{\cdot}t$, are determined by regression analysis on the total data obtained. The transition time between the primary and second creep means the time when the differential value of $b{\cdot}log$ t is equal to the differential value of $c{\cdot}t$. The correlation equation between loads (${\sigma}$%) and creep constants is deduced from the three times multi stage loading tests. Also a failure time under each loads is anticipated from creep constants and maximum strain at the failure.

The Experimental Study on the Long-term Creep Settlements of Nam-Hae Sands (남해안 모래의 장기 크리프 침하 특성에 관한 실험적 연구)

  • Park, Eonsang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.21-28
    • /
    • 2018
  • In this study, a standard consolidation test (Oedometer) was performed on the relative density of sand in the south coast to evaluate long-term creep settlement characteristics. Experimental results show that the cumulative settlement at the final loading stage decreases as the relative density increases and the variation of the void ratio decreases. As a result of analyzing the settlement rate of long-term creep of sand, creep settlement of 4.7~11.0% occurred depending on relative density with respect to total settlement. The creep parameter, Beta, of Schmertmann et al. (1978) was estimated to be 0.17~0.40 (average 0.21), and it tended to converge to a certain value when the load step becomes more than a certain level. It was found that there is no significant difference in the creep parameter depending on the layer thickness, and it was confirmed that the creep parameter could be applied regardless of the field layer thickness.

Analysis of Concrete Frame Structures Considering the Construction Sequences (시공단계를 고려한 콘크리트 프레임 구조물의 해석)

  • 곽효경;서영재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.171-184
    • /
    • 1999
  • 이 논문은 시공단계를 고려한 콘크리트 프레임 구조물의 거동 해석을 다루고 있다. 고층건물의 경우 하루에 시공이 완료되지 않으므로 각 시공단계에 따라 콘크리트의 시간의존적 현상은 다르게 발생된다. 이를 위하여 이 논문에서는 일반적인 프레임 해석기법에 콘크리트의 시간의존적 특성을 고려하였다. 이 연구에 도입된 해석기법은 단면을 가상의 층으로 나누고 각층은 일축상태로 가정한 적층단면을 사용하였다. 요소는 평면 보요소를 사용하였으며 강성행렬은 변위법을 바탕으로 유도하였고 전체적인 구조해석은 비선형 구조해석 방법의 하나인 복합법을 사용하였다. 콘크리트의 시간의존적 특성을 고려하기 위하여 단면의 각 층에서 크리프와 건조수축에 의한 변형률을 계산하였으며 크리프는 크리프 Compliance의 전개에 기본을 둔 1차 순환적 단계 알고리즘을 사용하였다. 끝으로 이 연구에서 제안된 해석모델을 이용하여 프레임해석 및 기둥축소에 관한 예제를 해석하였다.

  • PDF

Creep and Shrinkage Strain and Comparative Analysis Between Concrete Test and Experimental Results of Lotte Super Tower (잠실제2롯데월드용 고강도 콘크리트 크리프 및 건조수축 실험결과 및 예측결과 비교분석)

  • Cha, Han-Il;Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.309-310
    • /
    • 2009
  • This study was performed as the first step of concrete materiaI research(concrete test program)of Lotte Super Tower column shortening research. Total 18 month's creep and shrinkage results were obtained from the test so far. The analysis were conducted using those results by design strength and loading age, and then validated model and equation were proposed from the result analysis and regression analysis. AC I209R Model, Bazant-Baweja B3 Model, CEB MC99 Model, & GL2000 Model, were employed for this study. The main analysis was completed on the total shrinkage strain and compliance.

  • PDF

Creep Behavior of High-Strength Concrete with Nylon Fibers at Elevated Temperatures (고온을 받은 나일론 섬유 보강 고강도 콘크리트의 크리프 거동)

  • Kim, Young-Sun;Lee, Tae-Gyu;Kim, Woo-Jae;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.627-636
    • /
    • 2011
  • Recently, to prevent explosive spalling of high-strength concrete (HSC) members, the usage of nylon fiber instead of polypropylene fiber has increased. Past experimental studies have been conducted to examine the spalling and mechanical properties of HSC with nylon fibers when exposed to elevated temperature. However, the previous studies on HSC with nylon fibers subjected to high temperatures were performed only on the properties such as spalling, compressive strength, and elastic modulus rather than investigations on to the behaviors such as thermal strain, total strain, steady state creep, and transient creep. Therefore, in this study thermal strain, total strain, steady state creep, and transient creep of HSC mixed with nylon fibers with water to binder ratio of 0.30 to 0.15 were tested. The experimental results showed that nylon fibers did not affect the performance of HSC with nylon fibers at high temperatures. However, HSC with nylon fibers generated a larger transient creep strain than that of HSC without fibers and normal strength concrete.

Creep and shrinkage properties using concrete test results and prediction models for high strength and high performance concrete (실험결과와 예측식을 통한 고강도 고성능 콘크리트의 크리프 및 건조수축 특성파악)

  • Cha, Han-Il;Moon, Hyung-Jae;Seok, Won-Kyun;Park, Soon-Jeon;Lee, Joo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.709-712
    • /
    • 2008
  • RC super tall buildings are planned and constructed recently in domestic area. Concrete is characterized by time dependant material such as creep and shrinkage. For this properties of concrete, differential shortening is one of the main issues on super tall buildings construction. This study includes material research, which is performing as a pre design stage to solve differential shortening on Lotte Super Tower Jamsil core structure(50, 60, & 70 MPa). The major part of this study is composed with comparison and analysis between experimental data and predicted data on total shrinkage and total compliance which were used on design stage. Four models, ACI209R Model, Ba${\check{z}}$ant-Baweja B3 Model, CEB MC99 Model, & GL2000 Model, were employed to predict them. It also tries to seek a proper model for high strength and high performance concrete in the case of no concrete test.

  • PDF

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Experimental Studies on Creep of Concrete under Multiaxial Stresses (다축응력 상태에 놓인 콘크리트외 크리프 특성에 관한 실험 연구)

  • Kwon Seung-Hee;Kim Sun-Young;Kim Jin-Keun;Lee Soo-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.185-194
    • /
    • 2004
  • It is difficult to analyze and predict the long-term behavior of concrete structures and members under multiaxial stresses because most of existing researches on creep of concrete were mainly concerned about uniaxial stress state. Therefore, the main objective of this paper is the investigation of creep properties of concrete under multiaxial stresses. This paper presents experimental study on creep of concrete under multiaxial compression. Twenty seven cubic specimens($20{\times}20{\times}20 cm$) for three concrete mixes were tested under uniaxial, biaxial, and triaxial stress states. Creep strains were measured in three directions of principal stresses. Poisson's ratio at the initial loading was obtained, as was Poisson's ratio due to creep stain and Poisson's ratio due to the combined creep strain and elastic strain. These Poisson's ratios were approximately equal for each concrete mix. The Poisson's ratio at the initial loading and the Poisson's ratio for the combined strain Increased slightly as the strength of the concrete increased. In addition, the volumetric creep strain and deviatoric creep strain were linearly proportional to volumetric stress and deviatoric stress, respectively.

Thermal and Creep Analysis of an Exhaust Duct of Smart UAV with FGM (경사기능재료를 사용한 스마트 무인기 덕트의 열해석과 크리프 해석)

  • Im, Jong-Bin;Park, Jeong-Seon;Yun, Dong-Yeong;Lee, Jeong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • The high temperature occurs due to the combustion gas from engine in unmanned aerial vehicles (UAV). The high temperature may cause serious damages in UAV structure. The Functionally Graded Material (FGM) is chosen as a candidate material of the engine duct structure. A functionally graded material (FGM) is a two- component mixture composed by compositional gradient materials from one material to the other. In contrast, traditional composite materials are homogeneous mixtures, and involve compositions between the desirable properties of the component materials. Since significant proportions of an FGM contain the pure form of each material, the need for compromise is eliminated. The properties of both components can be fully utilized. Thermal stress analysis of FGM layers (20, 40, 60, 80 and 100) is performed in this paper. In addition, the creep behavior of FGM applied in duct structure of an engine is analyzed for better understanding of FGM characteristics.