• 제목/요약/키워드: 전착 코팅

검색결과 23건 처리시간 0.017초

천연해수 중 전류밀도 변화에 따라 형성된 환경친화적인 전착 코팅막의 특성 분석 (Properties Analysis of Environment Friendly Electrodeposit Films Formed at Various Current Density Conditions in Natural Seawater)

  • 이찬식;배일용;김기준;문경만;이명훈
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.253-262
    • /
    • 2004
  • Calcareous deposits are the consequence of pH increase of the electrolyte adjacent to metal surface affected by cathodic current in seawater. It obviously has several advantages over conventional coatings, since the calcareous deposit coating is formed from coating (Mg$^{2+}$, $Ca^{2+}$) naturally existing in seawater. In consideration of this respect, environment friendly calcareous deposit films were formed by an electro deposition technique on steel substrates submerged in 48$^{\circ}C$ natural seawater. And the influence of current density, coating time and attachment of steel mesh on composition ratio, structure and morphology of the electrodeposited films were investigated by Scanning Electron Microscopy(SEM), Energy Dispersive Spectroscopy(EDS) and X-Ray Diffractor(XRD), respectively. Accordingly, this study provides a better understanding of the composition between the growth of $Mg(OH)_2$ and $CaCO_3$ during the formation of electro deposit films on steel substrate under cathodically electrodeposition in $48^{\circ}C$ natural seawater. The Mg compositions, in general, are getting decreased regardless of current density but Ca compositions are getting increased as electrodeposition time runs. That is, $Mg(OH)_2$ compounds of brucite structure shaped as flat type is formed at the initial stage of electrodeposition, but CaCO$_3$ compounds of aragonite structure shaped as flower type is formed in large scale. Besides, $Mg(OH)_2$ compounds were much formed at 5 A/$\m^2$ environment condition compared to the 3 A/$\m^2$ and 4 A/$\m^2$ environment conditions. This is because that OH- which was comparatively largely generated at the metal surface is preferably combined with $Mg^{2+}$TEX>.

질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성 (Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion)

  • 김광욱;김성민;김연화;이일희;지광용
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.433-441
    • /
    • 2007
  • 본 논문에서는 질산염 이온의 환원을 위한 Sn의 흡착 또는 전착을 가지는 Sn-modified Pt 전극의 안정성이 평가되었다. 전극의 불안정성의 원인을 찾기 위하여 전극이 접하는 용액과 전극에 가해지는 전압에 따른 Pt 표면에서 Sn의 전기화학적 및 재료적 변화가 조사되었다. 제작된 Sn-modified Pt 전극 표면의 Sn은 hydroxide 형태로 존재하여 물, 특히 산 용액에서 방치하는 것에 의해서도 용해되어 쉽게 전극의 활성이 감소되었으며, 질산염 이온의 환원 시 전극에 $Sn(OH)_2$와 Sn의 산화-환원 평형 전압 보다 음의 전압이 가해질 때 전극 표면의 Sn hydroxide는 Sn으로 환원되어 Pt 전극 내부로 고체 확산되었고, 이는 Sn-modified Pt 전극의 활성을 감소시켰다. Sn의 고체 확산은 전극에 가해주는 전압에 비례하였다. Sn을 Pt에 코팅시키기 위하여 UPD 조건에서 흡착하는 것 보다 많은 Sn을 Pt 표면에 붙일 수 있는 Sn을 Pt에 전해 전착시키는 것이 질산염 이온의 환원하는 동안 전극의 건전성을 유지하는데 유리하였다.

해수 중 CO2 기체의 유입에 의한 환경 친화적인 전착 코팅막의 형성과 그 내식특성 (Formation of Environment Friendly Electrodeposition Films by CO2 Gas Dissolved in Seawater and Their Corrosion Resistance)

  • 이성준;김혜민;이슬기;문경만;이명훈
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.39-47
    • /
    • 2014
  • The peculiar feature of cathodic protection in seawater has the capability to form mineral calcareous deposits such as magnesium and calcium on metal surfaces. It is assumed that $OH^-$ ions are generated close to the metal surface as a result of cathodic protection and generated $OH^-$ ions increases the pH of the metal/seawater interface outlined as the following formulae. (1) $O_2+2H_2O+4e{\rightarrow}4OH^-$, or (2) $2H_2O+2e{\rightarrow}H_2+2OH^-$. And high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the following formulae. (1) $Mg^{2+}+2OH^-{\rightarrow}Mg(OH)_2$, (2) $Ca^{2+}+CO{_3}^{2-}{\rightarrow}CaCO_3$. The focus of this study was to increase the amount of $CO{_3}^{2-}$ with the injection of $CO_2$ gas to the solution for accelerating process of the following formulae. (1) $H_2O+CO_2{\rightarrow}H_2CO_3$, (2) $HCO^{3-}{\rightarrow}{H^+}+CO{_3}^{2-}$. Electrodeposit films were formed by an electro-deposition technique on steel substrates in solutions of both natural seawater and natural seawater dissolved $CO_2$ gas with different current densities, over different time periods. The contents of films were investigated by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The adhesion and corrosion resistance of the coating films were evaluated by anodic polarization. From an experimental result, only $CaCO_3$ were found in solution where injected $CO_2$ gas regardless of current density. In case of injecting the $CO_2$ gas, weight gain of electrodeposits films hugely increased and it had appropriate physical properties.