• Title/Summary/Keyword: 전진속도

Search Result 142, Processing Time 0.027 seconds

Flow Analyses of Upper Airway Before and After Maxillomandibular Advancement Surgery for Obstructive Sleep Apnea Patient (폐쇄성 수면무호흡증 환자의 상하악 전진술 후 상기도 내 유동해석)

  • Kim, Hyoung-Ho;Suh, Sang-Ho;Choi, Jin-Young;Kim, Taeyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.443-448
    • /
    • 2015
  • Obstructive sleep apnea (OSA) is a syndrome characterized by the repetitive episodic collapse of the upper airway. Maxillomandibular advancement surgery is one of the most effective surgical treatment methods in treating obstructive sleep apnea. The advancement of both maxill and mandible can enlarge the cross-sectional areas and volumes of the postero-superior airway. The purpose of this study is to analyze flow patterns in the upper airway before and after maxillomandibular advancement surgery. Here, we analyzed flow phenomena of inspiration and expiration to prevent obstructive sleep apnea patient from happening side effect. Modeling of the upper airway carried out from clinical CT scanned images. We used time-dependent values for boundary condition. CFD analyses were performed and evaluated section of minimum area (SMA), compared with patient inside upper airway before and after maxillomandibular advancement surgery in SMA, and negative pressure effects. The study showed the greatest enlargment of the section of minimum cross-sectional area. Moreover, the velocity and the negative airway pressure were decreased. According to the result of this study, the maxillomandibular advancement surgery stabilizes the airflow in the postero-superior airway of OSA patients.

Study on Three-Dimensional Analysis of Agricultural Plants and Drone-Spray Pesticide (농작물을 위한 드론 분무 농약 살포의 3차원 분석에 관한 연구)

  • Moon, In Sik;Kown, Hyun Jin;Kim, Mi Hyeon;Chang, Se Myong;Ra, In Ho;Kim, Heung Tae
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.176-186
    • /
    • 2020
  • The size and shape of crops are diverse, and the growing environment is also different. Therefore, when one uses a drone to spray pesticides, the characteristics of each crop must be considered, and flight conditions such as the flight height and forwarding velocity of the drone should be changed. The droplet flow of pesticides is affected by various flight conditions, and a large change occurs in the sprayed area. As a result, an uneven distribution of liquid may be formed at the wake, and the transport efficiency will be decreased as well as there would be a risk of toxic scatter. Therefore, this paper analyzes the degree of distribution of pesticides to the crops through numerical analysis when pesticide is sprayed onto the selected three crops with different characteristics by using agricultural drones with different flight conditions. On the purpose of establishing a guideline for spraying pesticides using a drone in accordance with the characteristics of crops, this paper compares the amount of pesticides distributed in the crops at the wake of nozzle flow using the figure of merit, and the sum of transported liquid rate divided by the root mean square of the probability density function.

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF

Technique for Placing Continuous Media on a Disk Array under Fault-Tolerance and Arbitrary-Rate Search (결함허용과 임의 속도 탐색을 고려한 연속 매체 디스크 배치 기법)

  • O, Yu-Yeong;Kim, Seong-Su;Kim, Jae-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1166-1176
    • /
    • 1999
  • 연속 매체, 특히 비디오 데이타에 대한 일반 사용자 연산에는 재생뿐만 아니라 임의 속도 탐색 연산, 정지 연산, 그리고 그 외 다양한 연산이 있다. 이 연산 중에서 원하는 화면을 빨리 찾는 데에 유용한 고속 전진(FF: fast-forward)과 고속 후진(FB: fast-backward)은 재생 연산과는 달리 비순차적인 디스크 접근을 요구한다. 이러한 경우에 디스크 부하가 균등하지 않으면 일부 디스크에 접근이 편중되어 서비스 품질이 떨어진다. 본 논문에서는 디스크 배열을 이용한 저장 시스템에서 디스크 접근을 고르게 분산시키기 위하여 '소수 라운드 로빈(PRR: Prime Round Robin)' 방식으로 연속 매체를 디스크에 배치하는 기법에서 문제가 됐던 낭비된 디스크 저장 공간을 신뢰도 향상을 위해서 사용하는 '그룹화된 패리티를 갖는 소수 라운드 로빈(PRRgp: PRR with Grouped Parities)' 방식을 제안한다. 이 기법은 PRR 기법처럼 임의 속도 검색 연산에 있어서 디스크 배열을 구성하는 모든 디스크의 부하를 균등하게 할뿐만 아니라 낭비됐던 디스크 저장 공간에 신뢰도를 높이기 위한 패리티 정보를 저장함으로서 신뢰도를 향상시킬 수 있다. 신뢰도 모델링 방법으로 조합 모델과 마르코프 모델을 이용해서 결함발생율과 결함복구율을 고려한 신뢰도를 산출하고 비교.분석한다. PRR 기법으로 연속 매체를 저장하고 낭비되는 공간에 패리티 정보를 저장할 경우에 동시에 두 개 이상의 결함 발생 시에 그 결함으로부터 복구가 불가능하지만 PRRgp 기법에서는 약 30% 이상의경우에 대해서 동시에 두 개의 결함 발생 시에 저장한 패리티 정보를 이용한 복구가 가능할 뿐만 아니라 패리티 그룹의 수가 두 개 이상인 경우에는 두 개 이상의 결함에 대해서도 복구가 가능하다.Abstract End-user operations on continuous media (say video data) consist of arbitrary-rate search, pause, and others as well as normal-rate play. FF(fast-forward) / FB(fast-backward) among those operations are desirable to find out the scene of interest but they require non-sequential access of disks. When accesses are clustered to several disks without considering load balance, high quality services in playback may not be available. In this paper, we propose a new disk placement scheme, called PRRgp(Prime Round Robin with Grouped Parities), with enhanced reliability by using the wasted disk storage space in an old one(PRR: Prime Round Robin), in which continuous media are placed on a disk array based storage systems to distribute disk accesses uniformly. The PRRgp can not only achieve load balance of disks consisting of a disk array under arbitrary-rate search like PRR, but also improve reliability by storing parity information on the wasted disk space appropriately. We use combinatorial and Markov models to evaluate the reliability for a disk array and to analyze the results. When continuous media like PRR are placed and parity information on the wasted disk space is stored, we cannot tolerate more than two simultaneous faults. But they can be recovered by using stored parity information for about 30 percent as a whole in case of PRRgp presented in this paper. In addition, more than two faults can be tolerated in case there are more than two parity groups.

Analysis of Three-dimensional Water Waves Created by a Hydrofoil Using a Higher-Order Boundary Element Method (고차경계요소법을 이용한 수중익에 대한 3차원 조파문제 해석)

  • Il-Ryong Park;Ho-Hwan Chun;Sung-Hwan Kim;Dong-Dai Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.1-13
    • /
    • 1998
  • In the present paper, the hydrodynamic characteristics of three dimensional hydrofoils moving with a constant speed below the free surface using a higher-order boundary element method based on 9-node Lagrangian curvilinear elements are investigated. A bi-quadratic spline scheme is employed to improve the numerical results on the free surface. To validate the present scheme, the calculated results are compared with the analytic solutions for a submerged sphere and a spheroid showing a good agreement. For the validation of the hydrofoil study, the computed lift and drag of a hydrofoil having $NACA64_{1}A412$ section with aspect ratio(A.R.) of 4 are compared with the experimental data by Wadlin et al.[28]. The comparison covers a number of variations of angle of attack and submergence depth. Then, using an A.R. hydrofoil with NACA0012 section, the free surface on the lift and drag are investigated and these are compared with the previous results. The wave elevations and patterns created by the aforementioned submerged bodies are also investigated with Froude numbers and submergences.

  • PDF

A Study on Estimate for Error and Convergence of Membrane Structures According to the Nonlinear Form-finding Techniques (비선형 형상 탐색 기법에 따른 막구조물의 오차와 수렴성 평가에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Jeong, Eul-Seok;Jeon, Jin-Hyung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.57-66
    • /
    • 2007
  • The membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and happen large deformation phenomenon. Therefore, in this paper, we investigate the convergence of solution and the speed according to the control variables and the method of shape analysis.

  • PDF

Development of Pressure Observer to Measure Cylinder Length of Harbor-Construction Robot (항만공사용 로봇의 실린더 길이 측정을 위한 압력 옵서버 개발)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.299-308
    • /
    • 2011
  • In this study, we develop a pressure observer to measure the cylinder length of a harbor-construction robot. For the robot control, sensors are required to measure the length of a hydraulic cylinder. The cylinder-position sensor is relatively expensive when the operating environment prohibits external approaches for the measurement of the cylinder position. LVDT or linear scales are usually mounted on the outside of the cylinder, which causes poor durability on a construction site. We use a pressure sensor to indirectly estimate the length of the cylinder. The pressure sensor is mounted inside a hydraulic valve box so that it is protected by the box and easy to waterproof for an underwater robot. By treating oil as a compressible fluid, we derive the nonlinear pressure dynamics as a function of the cylinder position, velocity, and pressure. The recursive least squares (RLS) algorithm is applied to identify the dynamic parameters, and the pressure observer estimates the cylinder position through the pressure acting on the head and the rod of the hydraulic cylinder. The position accuracy is relatively low, but it is acceptable for a construction robot that handles large armor stones.

Development of a Ventilating Waterjet Propulsor for Super-High Speed Ships (초고속선을 위한 공기유입 물제트 추진기 개발)

  • J.T. Lee;I.S. Moon;Y.H. Park;K.Y. Kim;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.41-49
    • /
    • 1999
  • A feasibility study is performed for practical application of a Ventilating Water-Jet(VWJ) propulsor which attracts new attention as a candidate propulsor for super-high speed vessels. Super-cavitating foil sections are adopted for the rotor blades since the rotor is operating at ventilating condition. Wedge type and cavitator type foil sections are used for the design of rotor blades. Other geometric characteristics of rotors are selected from the Kaplan type ducted propeller rotors. The test section of KRISO cavitation tunnel is modified to perform open-water tests of the VWJ propulsors. The tests are performed both at fully-submerged and free-jet conditions. Ventilation occurred at the free-jet condition by sucking the air in the downstream side of the rotor, which easily develops as super-cavitation when the rotor operates at lower advance coefficients. Spoilers are attached at the trailing end of the pressure side of the blade section, in order to increase the lift force.

  • PDF

Evaluation of Flutter Velocity of Bridge Deck Section using Distributed Computing Environment (분산형 전산환경을 활용한 교량 거더의 플러터 발생풍속 산정)

  • Lee, Kuen-Bae;Kim, Chongam
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.75-75
    • /
    • 2011
  • 본 논문에서는 진동중인 교량 거더에 작용하는 풍하중을 산정하고 그에 따른 플러터 발생풍속을 예측하기 위하여 분산형 전산환경을 활용한 수치해석 연구를 수행하였다. 분산형 전산환경은 웹 포탈을 기반으로 수치해석 환경을 제공하는 수치풍동 시스템으로서, 전산유체역학(CFD : Computational Fluid Dynamics)에 대한 전문지식이 부족한 사용자들도 격자생성, 수치해석자를 이용한 계산, 가시화 등의 전 과정을 편리하게 수행할 수 있는 차세대 토목분야 연구 환경이다. 본 시스템은 그리드스피어(GfidSphere)를 기반으로 구성되었으며, 기본적으로 사용자 관리, 세션 관리, 그룹 관리, 레이아웃 관리 등을 제공하여 사용자가 포탈을 통해서 다양한 서비스를 쉽게 사용할 수 있는 환경을 구축하도록 도와준다. 수치해석을 위한 유체 지배방정식은 2차원 비정상 비압축성 RANS(Reynolds-Averaged Navier-Stokes) 방정식이며, pseudo compressibility 방법을 적용하였다. 비정상 유동장을 해석하기 위하여 이중시간 전진법(dual time stepping)을 사용하였으며, 수렴가속화를 위해 Multi-grid 기법을 적용하였다. 또한 난류 유동장 해석을 위해서 $k-{\omega}$ SST 난류 모델을 사용하였으며, 난류 천이 과정에서의 유동을 모사하기 위하여 Total stress limitation 방법을 적용하였다. 교량 거더의 연직과 회전방향의 2자유도 움직임을 모사하기 위하여 동적격자 기법을 도입하였다. 교량 거더 주변의 비정상 유동해석 결과를 통해, 거더 표면에서 떨어져나가는 크고 작은 와류의 영향으로 양력 및 모멘트 계수 그래프가 중첩된 진폭과 주기를 갖고 주기적으로 나타나는 것을 확인할 수 있었다. 또한 계산된 비정상 공기력을 적용한 2자유도 플러터 방정식을 통하여 플러터 발생풍속을 산정하였다. 최종적으로 본 연구에서 계산된 결과의 타당성을 검증하기 위하여 수치적으로 구한 플러터 발생풍속과 기존의 실험 및 수치해석 결과를 비교하였으며, 결과는 잘 일치하였다.

  • PDF

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.