• Title/Summary/Keyword: 전진비행

Search Result 82, Processing Time 0.025 seconds

A Study on Walking Dron available for a rescue Purpose (구조 목적에 적용 가능한 보행가능 드론에 대한 연구)

  • Jeon, Jinseong;Lee, Jibin;Beck, Jonghwan;Bong, Daegeun;Lee, Jihyeon;Pak, Myeongsuk;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1772-1775
    • /
    • 2015
  • 본 논문에서는 쿼드콥터와 4족이동 로봇을 결합 하여 임베디드 보드를 이용한 실시간 영상처리를 활용하고 환경 탐지용 센서를 부착하여 재난극복 및 재난현장에서의 인명구조, 신원확인을 하는 지능로봇을 제안한다. 쿼드콥터는 비행이동을 하면서 임무를 수행하고 4족이동 로봇은 지상 임무수행을 하는 로봇이다. 본 논문에서는 쿼드콥터와 4족 이동로봇의 결합으로 인해 로봇의 무게 고려를 하여 설계를 하여, 비행과 지상을 이동하며 영상처리를 이용하여 임무를 수행 할 수 있는 로봇을 제작 했다.

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

ANALYSIS OF FLOW FIELD AROUND NON-LIFTING FORWARD FLIGHT ROTOR USING LOW MACH NUMBER PRECONDITIONING (저마하수 예조건화 기법을 이용한 무양력 전진 비행 로터 주위 유동장 해석)

  • Kim, Jee-Woong;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.251-255
    • /
    • 2008
  • Flow field around helicopter involves incompressible flow near the blade root and compressible flow at the blade tip. A problem occurs for low Mach number flow due to the stiffness of the governing equations. Time-derivative preconditioning techniques have been incorporated to reduce the stiffness that occurs at low speed region. The preconditioned form of the compressible Navier-Stokes and Euler equations is used. Computations are performed for the Caradonna-Tung's hovering and non-lifting forward flight case. Computational results are in good agreement with the experimental data.

  • PDF

A CFD ANALYSIS OF THE FLOWFIELD OF A HELICOPTER IN FORWARD MOTION FOR THE STUDY OF PITOT-TUBE FOR INSTALLATION LOCATION (피토튜브 장착위치 선정을 위한 전진 비행하는 헬리콥터 유동장의 CFD 분석)

  • Cho, H.G.;Kang, Y.J.;Kim, S.H.;Myong, R.S.;Cho, T.H.;Park, Y.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.256-261
    • /
    • 2008
  • A CFD analysis of helicopter flowfield in forward flight is considered as non-trivial issue because of the complexity of vorticity-dominated flowfield. In this work, a study on the selection of the proper location for the installation of the Pitot probe is conducted using a CFD code which can deal with the interaction of rotor blade vortex and body. To describe the flow patterns for rotating rotor blades and body, the sliding mesh scheme is utilized. Pressure distributions and flow patterns are also analyzed to identify regions free from the interaction of body and wake induced from rotor blades.

  • PDF

ANALYSIS OF FLOW FIELD AROUND NON-LIFTING FORWARD FLIGHT ROTOR USING LOW MACH NUMBER PRECONDITIONING (저마하수 예조건화 기법을 이용한 무양력 전진 비행 로터 주위 유동장 해석)

  • Kim, Jee-Woong;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.251-255
    • /
    • 2008
  • Flow field around helicopter involves incompressible flow near the blade root and compressible flow at the blade tip. A problem occurs for low Mach number flow due to the stiffness of the governing equations. Time-derivative preconditioning techniques have been incorporated to reduce the stiffness that occurs at low speed region. The preconditioned form of the compressible Navier-Stokes and Euler equations is used. Computations are performed for the Caradonna-Tung's hovering and non-lifting forward flight case. Computational results are in good agreement with the experimental data.

  • PDF

A CFD ANALYSIS OF THE FLOWFIELD OF A HELICOPTER IN FORWARD MOTION FOR THE STUDY OF PITOT-TUBE FOR INSTALLATION LOCATION (피토튜브 장착위치 선정을 위한 전진 비행하는 헬리콥터 유동장의 CFD 분석)

  • Cho, H.G.;Kang, Y.J.;Kim, S.H.;Myong, R.S.;Cho, T.H.;Park, Y.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.256-261
    • /
    • 2008
  • A CFD analysis of helicopter flowfield in forward flight is considered as non-trivial issue because of the complexity of vorticity-dominated flowfield. In this work, a study on the selection of the proper location for the installation of the Pitot probe is conducted using a CFD code which can deal with the interaction of rotor blade vortex and body. To describe the flow patterns for rotating rotor blades and body, the sliding mesh scheme is utilized. Pressure distributions and flow patterns are also analyzed to identify regions free from the interaction of body and wake induced from rotor blades.

  • PDF

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.