• Title/Summary/Keyword: 전지구자료

Search Result 155, Processing Time 0.023 seconds

THE ELECTROMAGNETIC CHARACTERISTICS OF THE POLAR IONOSPHERE DURING A MODERATELY DISTURBED PERIOD (지자기교란시 극전리층의 전자기적인 특성)

  • 안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.216-233
    • /
    • 1995
  • The distributions of the ionospheric conductivities, electric potential, ionospheric currents, field-aligned currents, Joule heating rate, and particle energy input rate by auroral electrons along with the characteristics of auroral particle spectrum are examined during moderately disturbed period by using the computer code developed by Kamide et al. (1981) and the ionospheric conductivity model developed by Ahn et al. (1995). Since the ground magnetic disturbance data are obtained from a single meridian chain of magnetometers (Alaska meridian chain) for an extended period of time (March 9 - April 27, 1978), they are expected to present the average picture of the electrodynamics over the entire polar ionosphere. A number of global features noted in this study are as follows: (1) The electric potential distribution is characterized by the so-called two cell convection pattern with the positive potential cell in the morning sector extending into the evening sector. (2) The auroral electrojet system is well developed during this time period with the signatures of DP-1 and DP-2 current systems being clearly discernable. It is also noted that the electric field seems to play a more important role than the ionospheric conductivity the conductivity over the poleward half of the westward electrojet in the morning sector while the conductivity enhancement seems to be more important over its equatorward half. (3) The global field-aligned current distribution pattern is quite comparable with the statistical result obtained by Iijima and Potemra (1976). However, the current density of Region 1 is much higher than that of Region 2 current at pointed out by pervious studies (e.g.; Kamide 1988). (4) The Joule heating occurs over a couple of island-like areas, one along the poleward side of the westward electrojet region in the afternoon sector. (5) The maximum average energy of precipitating electrons is found to be in the morning sector (07∼08 MLT) while the maximum energy flux is registered in the postmidnight sector (02 MLT). Thus auroral brightening and enhancement of ionospheric conductivity during disturbed period seem to be more closely associated with enhancement of particle flux rather than hardening of particle energy.

  • PDF

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Assessing Impacts of Global Warming on Rice Growth and Production in Korea (지구온난화에 따른 벼 생육 및 생산성 변화 예측)

  • Shim, Kyo-Moon;Roh, Kee-An;So, Kyu-Ho;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.121-131
    • /
    • 2010
  • This study was carried out to evaluate spatial variations in rice production areas by simulating rice growth and yield with CERES-Rice growth model under GCM $2{\times}CO_2$ climate change scenarios. A modified window version(v4.0) of CERES-Rice was used to simulate the growth and development of three varieties, representing early, medium, and late maturity classes. Simulated growth and yield data of the three cultivars under the climate for 1971 to 2000 was set as a reference. Compared with the current normal(1971 to 2000), heading period from transplanting to heading date decreased by 7~8 days for the climate in $2^{\circ}C$ increase over normal, and 16~18 days for the climate in UKMO with all maturity classes, while change of ripening period from heading to harvesting date was different with maturity classes. That is, physical maturity was shortened by 1~3 days for early maturity class and 14~18 days for late maturity class under different climate change scenarios. Rice yield was in general reduced by 4.5%, 8.2%, 9.9%, and 14.9% under the climate in $2^{\circ}C$, $3^{\circ}C$, $4^{\circ}C$, and about $5^{\circ}C$ increase, respectively. The yield reduction was due to increased high temperature-induced spikelet sterility and decreased growth period. The results show that predicted climate changes are expected to bring negative effects in rice production in Korea. So, it is required for introduction of new agricultural technologies to adapt to climate change, which are, for example, developing new cultivars, alternations of planting dates and management practices, and introducing irrigation systems, etc.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.