• Title/Summary/Keyword: 전전환

Search Result 14, Processing Time 0.019 seconds

The Evaluation of Cerebral Executive Function Using Functional MRI (기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가)

  • Eun, Sung Jong;Gook, Jin Seon;Kim, Jeong Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.305-311
    • /
    • 2013
  • This study involves an experiment using functional magnetic resonance imaging(fMRI) to delineate brain activation for execution functional performance. Participates to this experiment of the normal adult (man 4, woman 6) of 10 people, is not inserts the metal all closed phobia and 24.5 year-old average ages which the operating surgeon experience which are not they were. The subject for a functional MRI experiment word -color test prosecuting attorney subject rightly at magnetic pole presentation time of 30 first editions and after presenting, uses SPM 99 programs and the image realignment, after executing a standardization (nomalization), a difference which the signal burglar considers the timely order as lattice does, pixel each image will count there probably is, in order to examine rest and active crossroad dividing independence sample t-test (p<.05). Overlapped in this standard anatomic image and got a brain activation image from level of significance 95%. With functional MRI resultant execution function inside being relation, the prefrontal lobe, anterior cingulate gyrus, parietal lobe, orbitofrontal gyrus, temporal lobe, parietal lobe was activated. The execution function promotes a recovery major role from occupational therapy, understanding about the damage mechanism is important. When confirms the brain active area which accomplishes an execution function brain plasticity develops the cognitive therapeutic method which is effective increases usefully very, will be used.

Decreased White Matter Structural Connectivity in Psychotropic Drug-Naïve Adolescent Patients with First Onset Major Depressive Disorder (정신과적 투약력이 없는 초발 주요 우울장애 청소년 환아들에서의 백질 구조적 연결성 감소)

  • Suh, Eunsoo;Kim, Jihyun;Suh, Sangil;Park, Soyoung;Lee, Jeonho;Lee, Jongha;Kim, In-Seong;Lee, Moon-Soo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.25 no.2
    • /
    • pp.153-165
    • /
    • 2017
  • Objectives : Recent neuroimaging studies focus on dysfunctions in connectivity between cognitive circuits and emotional circuits: anterior cingulate cortex that connects dorsolateral orbitofrontal cortex and prefrontal cortex to limbic system. Previous studies on pediatric depression using DTI have reported decreased neural connectivity in several brain regions, including the amygdala, anterior cingulate cortex, superior longitudinal fasciculus. We compared the neural connectivity of psychotropic drug naïve adolescent patients with a first onset of major depressive episode with healthy controls using DTI. Methods : Adolescent psychotropic drug naïve patients(n=26, 10 men, 16 women; age range, 13-18 years) who visited the Korea University Guro Hospital and were diagnosed with first onset major depressive disorder were registered. Healthy controls(n=27, 5 males, 22 females; age range, 12-17 years) were recruited. Psychiatric interviews, complete psychometrics including IQ and HAM-D, MRI including diffusion weighted image acquisition were conducted prior to antidepressant administration to the patients. Fractional anisotropy(FA), radial, mean, and axial diffusivity were estimated using DTI. FMRIB Software Library-Tract Based Spatial Statistics was used for statistical analysis. Results : We did not observe any significant difference in whole brain analysis. However, ROI analysis on right superior longitudinal fasciculus resulted in 3 clusters with significant decrease of FA in patients group. Conclusions : The patients with adolescent major depressive disorder showed statistically significant FA decrease in the DTI-based structure compared with healthy control. Therefore we suppose DTI can be used as a bio-marker in psychotropic drug-naïve adolescent patients with first onset major depressive disorder.

Yield Responses to NPK Fertilizers in Different Corn Cultivars and Soils (토양비옥도(土壤肥沃度)와 품종(品種)에 따른 옥수수의 삼요소(三要素) 시비반응(施肥反應))

  • Shin, Cheol-Woo;Kim, Jeong-Je;Yoon, Jung-Hui;Cho, Byoung-Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 1983
  • The experiments were carried out in farmers' field to determine the yield response of corn to fertilizers for the three years (1976-1979) The results are summarized as follow: 1. The optimum application rates of N-P-K fertilizers on corn cultivars was 21.1-11.6-10.6 kg/10a for Suweon 19, 23.0-11.9-15.0 kg/10a for Boggyo 2 and 19.8-10.6-9.1 kg/10a for Hwangok 3, and 23.3-19.1-10.7 kg/10a in drained paddy soil. 2. The optimum application rates of N-P-K fertilizers was 23.4-15.5-13.2 kg/10a in fertile soil comparing with 27.0-15.6-18.8 kg/10a in the soil of low fertility. However yield was lower in soil of low fertility than in fertile soil even under the condition applied optimum amount. 3. Production efficiencies of each kg of N, P, K application for Suweon 19, Boggyo 2, and Hwangok 3 were 26.1-24.5-9.7, 17.8-13.3-2.0, and 14.6-21.5-4.2kg. respectively. 4. The optimum nutrient content in soil and plant to yield 1,000 kg/10a of corn was available phosphorus 200 ppm, exchangeable potassium 0.63 me/100g, potassium saturation rate 5.0% in soil, and nitrogen 2.86%, phosphorus 0.73%, potassium 2.80% in plant at tasseling stage.

  • PDF

Spatial Variation Analysis of Soil Characteristics and Crop Growth accross the Land-partitioned Boundary I. Spatial Variation of Soil Physical Properties (구획경계선(區劃境界線)의 횡단면(橫斷面)에 따른 토양특성(土壤特性)과 작물생육(作物生育)에 관한 공간변이성(空間變異性) 분석(分析) 연구(硏究) I. 토양물리성(土壤物理性)의 공간변이성(空間變異性))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 1989
  • In order to study spatial variability of soil physical properties accross the land-partitioned boundary on Hwadong silt clay loam soil (Fine clayey, mixed, mesic family of Aquic Hapludalfs), all measured data were analyzed by means of kriging, fractile diagram, smooth frequency distribution, and autocorrelation. Sampling for soil particle size distribution analysis was made at 225 intersections of $15{\times}15$ grid with 10m interval. Field capacity, bulk density and saturated hydraulic conductivity were measured in situ at 594 intersections of $33{\times}18$ grid with 2.5m interval in only $6,000m^2$ reselected from $22,500m^2$ of sampling area for particle size distribution analysis. Sampled or measured soil depths were 0 to 10cm 25 to 35cm and 50 to 60cm at each intersections. The results are summarized as follows: 1. The coefficient of variance (CV) of various physical properties ranges from 4.8 to 128.8%. Saturated hydraulic conductivity is classified into the high variation group with CV greater than 100%, while the low variation group with CV smaller than 10% consists of bulk density. Other properties belong to the medium variation group with CV between 10 and 100%. 2. The appropriate number of soil samples for the determination of various physical properties with error smaller than 10% are calculated as one for bulk density, six for field moisture capacity, 16 for silt, 19 for clay, 69 for sand and 686 for saturated hydraulic conductivity. 3. Smooth frequency distribution and fractile diagram show that saturated hydraulic conductivity is in lognormal distribution while other physical properties are in normal distribution. 4. Serial correlation analysis reveals that the soil physical properties have spatial dependence between two nearest neighbouring grid points. Autocorrelation analysis of physical properties measured between the serial grid points in the direction of south to north following section boundary shows that the zone of influence showing stationarity ranges from 7.5 to 40m. In the direction of east to west across section boundary, the autocorrelogram of many physical properties shows peaks with the periodic interval of 30m, which are similar to the partitioned land width. This reveals that the land-partitioned boundary causes soil variability.

  • PDF