• Title/Summary/Keyword: 전장유전체 연관성 연구

Search Result 14, Processing Time 0.023 seconds

Genome Wide Association Study to Identity QTL for Growth Taits in Hanwoo (전장 유전체 연관분석을 통한 한우 성장 연관 양적형질좌위 (QTL) 탐색)

  • Lee, Seung Hwan;Lim, Dajeong;Jang, Gul Won;Cho, Yong Min;Choi, Bong Hwan;Kim, Si Dong;Oh, Sung Jong;Lee, Jun Heon;Yoon, Duhak;Park, Eung Woo;Lee, Hak Kyo;Hong, Seong Koo;Yang, Boh Suk
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.323-329
    • /
    • 2012
  • Genome-wide association study was performed on data from 266 Hanwoo steers derived from 66 sires using bovine 10K mapping chip in Hanwoo (Korean cattle). SNPs were excluded from the analysis if they failed in over 5% of the genotypes, had median GC scores below 0.6, had GC scores under 0.6 in less than 90% of the samples, deviated in heterozygosity more than 3 standard deviations from the other SNPs and were out of Hardy-Weinberg equilibrium for a cut-off p-value of $1^{-15}$. Unmapped and SNPs on sex chromosomes were also excluded. A total of 4,522 SNPs were included in the analysis. To test an association between SNP and QTL, a single marker regression analysis was implemented in this study. SNP was assumed to be in LD with QTL in close proximity and the effect evaluated was additive effect (QTL allele substitution effect). The number of significant SNP at a threshold of P<0.001 was 3, 5, 5 and 4 loci for live weight at 6, 12, 18 and 24 months, respectively. For live weight at different ages, significant SNP were spread out across chromosome but some of significant SNP (rs29012453 and rs29012456 on BTA24) had shown highly significant effects. As for the distribution of size of SNP effects, few loci for live weight at different age had moderate effects (6~11%) but most of significant loci had small effects (2 to 5% of additive genetic variance) against total additive genetic variance. In conclusion, live weight at different age might be affected by few loci with moderate effect and many loci with small effects across genome in Hanwoo.

Estimation of Linkage Disequilibrium and Effective Population Size using Whole Genome Single Nucleotide Polymorphisms in Hanwoo (한우에서 전장의 유전체 정보를 활용한 연관불평형 및 유효집단크기 추정에 관한 연구)

  • Cho, Chung-Il;Lee, Joon-Ho;Lee, Deuk-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.366-372
    • /
    • 2012
  • This study was conducted to estimate the extent of linkage disequilibrium (LD) and effective population size using whole genomic single nucleotide polymorphisms (SNP) genotyped by DNA chip in Hanwoo. Using the blood samples of 35 young bulls born from 2005 to 2008 and their progenies (N=253) in a Hanwoo nucleus population collected from Hanwoo Improvement Center, 51,582 SNPs were genotyped using Bovine SNP50 chips. A total of 40,851 SNPs were used in this study after elimination of SNPs with a missing genotyping rate of over 10 percent and monomorphic SNPs (10,730 SNPs). The total autosomal genome length, measured as the sum of the longest syntenic pairs of SNPs by chromosome, was 2,541.6 Mb (Mega base pairs). The average distances of all adjacent pairs by each BTA ranged from 0.55 to 0.74 cM. Decay of LD showed an exponential trend with physical distance. The means of LD ($r^2$) among syntenic SNP pairs were 0.136 at a range of 0-0.1 Mb in physical distance and 0.06 at a range of 0.1-0.2 Mb. When these results were used for Luo's formula, about 2,000 phenotypic records were found to be required to achieve power > 0.9 to detect 5% QTL in the population of Hanwoo. As a result of estimating effective population size by generation in Hanwoo, the estimated effective population size for the current status was 84 heads and the estimate of effective population size for 50 generations of ancestors was 1,150 heads. The average decreasing rates of effective population size by generation were 9.0% at about five generations and 17.3% at the current generation. The main cause of the rapid decrease in effective population size was considered to be the intensive use of a few prominent sires since the application of artificial insemination technology in Korea. To increase and/or sustain the effective population size, the selection of various proven bulls and mating systems that consider genetic diversity are needed.

Agronomic and Genetic Evaluation on a Dull Mutant Line Derived from the Sodium Azide Treated 'Namil', a Non-Glutinous Japonica Rice (남일벼 돌연변이 유래 중간찰 계통의 작물학적 특성 및 배유특성 지배유전자위 표지)

  • Chun, Jae-Buhm;Jeung, Ji-Ung;Cho, Seong-Woo;Kim, Woo-Jae;Ha, Ki-Young;Kang, Kyung-Ho;Ko, Jae-Kwon;Kim, Hyun-Soon;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.448-457
    • /
    • 2015
  • Developing rice lines with various amylose contents is necessary to diverse usages of rice in terms of raw materials for processed food production, and thereby to promote rice consumption in Korea. A rice mutant line, 'Namil(SA)-dull1' was established through sodium azide mutagenesis on 'Namil', a non-glutinous Korean Japonica rice cultivar. Namil(SA)-dull1' had dull endosperm characteristics and the evaluated amylose content was 12.2%. A total of 94 F2 progenies from a cross between 'Namil(SA)-dull1' and 'Milyang23', a non-glutinous Tongil-type rice cultivar, was used for genetic studies on the endosperm amylose content. Association analyses, between marker genotypes of 53 SSR anchor markers and evaluated amylose contents of each 94 F2:3 seeds, initially localized rice chromosome 6 as the harboring place for the modified allele(s) directing low amylose content of 'Namil(SA)-dull1'. By increasing SSR marker density on the putative chromosomal region followed by association analyses, the target region was narrowed down 0.94 Mbp segment, expanding from 28.95 Mbp to 29.89 Mbp, on rice chromosome 6 pseudomolecule. Among the SSR loci, RM7555 explained 84.2% of total variation of amylose contents in the $F_2$ population. Further physical mapping on the target region directing low amylose content of 'Namil(SA)-dull1' would increase the breeding efficiency in developing promising rice cultivars with various endosperm characteristics.

Genome-wide Copy Number Variation in a Korean Native Chicken Breed (한국 토종닭의 전장 유전체 복제수변이(CNV) 발굴)

  • Cho, Eun-Seok;Chung, Won-Hyong;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Mi-Na;Kim, Namshin;Kim, Tae-Hun;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Copy number variation (CNV) is a form of structural variation that shows various numbers of copies in segments of the DNA. It has been shown to account for phenotypic variations in human diseases and agricultural production traits. Currently, most of chicken breeds in the poultry industry are based on European-origin breeds that have been mostly provided from several international breeding companies. Therefore, National Institute of Animal Science, RDA has been trying to restore and improve Korean native chicken breeds (12 lines of 5 breeds) for about 20 years. Thanks to the recent advance of sequencing technologies, genome-wide CNV can be accessed in the higher resolution throughout the genome of species of interest. However, there is no systematic study available to dissect the CNV in the native chicken breed in Korea. Here, we report genome-wide copy number variations identified from a genome of Korean native chicken (Line L) by comparing between the chicken reference sequence assembly (Gallus gallus) and a de novo sequencing assembly of the Korean native chicken (Line L). Throughout all twenty eight chicken autosomes, we identified a total of 501 CNVs; defined as gain and loss of duplication and deletion respectively. Furthermore, we performed gene ontology (GO) analysis for the putative CNVs using DAVID, leading to 68 GO terms clustered independently. Of the clustered GO terms, genes related to transcription and gene regulation were mainly detected. This study provides useful genomic resource to investigate potential biological implications of CNVs with traits of interest in the Korean native chicken.