• Title/Summary/Keyword: 전자 하드웨어

Search Result 1,670, Processing Time 0.022 seconds

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5 (라즈베리파이와 YOLOv5를 이용한 해양쓰레기 시계열 변화량 분석)

  • Bo-Ram, Kim;Mi-So, Park;Jea-Won, Kim;Ye-Been, Do;Se-Yun, Oh;Hong-Joo, Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1249-1258
    • /
    • 2022
  • Marine debris is defined as a substance that is intentionally or inadvertently left on the shore or is introduced or discharged into the ocean, which has or is likely to have a harmful effect on the marine environments. In this study, the detection of marine debris and the analysis of the amount of change on marine debris were performed using the object detection method for an efficient method of identifying the quantity of marine debris and analyzing the amount of change. The study area is Yuho Mongdol Beach in the northeastern part of Geoje Island, and the amount of change was analyzed through images collected at 15-minute intervals for 32 days from September 12 to October 14, 2022. Marine debris detection using YOLOv5x, a one-stage object detection model, derived the performance of plastic bottles mAP 0.869 and styrofoam buoys mAP 0.862. As a result, marine debris showed a large decrease at 8-day intervals, and it was found that the quantity of Styrofoam buoys was about three times larger and the range of change was also larger.

Real-time Monocular Camera Pose Estimation using a Particle Filiter Intergrated with UKF (UKF와 연동된 입자필터를 이용한 실시간 단안시 카메라 추적 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.315-324
    • /
    • 2023
  • In this paper, we propose a real-time pose estimation method for a monocular camera using a particle filter integrated with UKF (unscented Kalman filter). While conventional camera tracking techniques combine camera images with data from additional devices such as gyroscopes and accelerometers, the proposed method aims to use only two-dimensional visual information from the camera without additional sensors. This leads to a significant simplification in the hardware configuration. The proposed approach is based on a particle filter integrated with UKF. The pose of the camera is estimated using UKF, which is defined individually for each particle. Statistics regarding the camera state are derived from all particles of the particle filter, from which the real-time camera pose information is computed. The proposed method demonstrates robust tracking, even in the case of rapid camera shakes and severe scene occlusions. The experiments show that our method remains robust even when most of the feature points in the image are obscured. In addition, we verify that when the number of particles is 35, the processing time per frame is approximately 25ms, which confirms that there are no issues with real-time processing.

A Study on Applying the Nonlinear Regression Schemes to the Low-GloSea6 Weather Prediction Model (Low-GloSea6 기상 예측 모델 기반의 비선형 회귀 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.489-498
    • /
    • 2023
  • Advancements in hardware performance and computing technology have facilitated the progress of climate prediction models to address climate change. The Korea Meteorological Administration employs the GloSea6 model with supercomputer technology for operational use. Various universities and research institutions utilize the Low-GloSea6 model, a low-resolution coupled model, on small to medium-scale servers for weather research. This paper presents an analysis using Intel VTune Profiler on Low-GloSea6 to facilitate smooth weather research on small to medium-scale servers. The tri_sor_dp_dp function of the atmospheric model, taking 1125.987 seconds of CPU time, is identified as a hotspot. Nonlinear regression models, a machine learning technique, are applied and compared to existing functions conducting numerical operations. The K-Nearest Neighbors regression model exhibits superior performance with MAE of 1.3637e-08 and SMAPE of 123.2707%. Additionally, the Light Gradient Boosting Machine regression model demonstrates the best performance with an RMSE of 2.8453e-08. Therefore, it is confirmed that applying a nonlinear regression model to the tri_sor_dp_dp function during the execution of Low-GloSea6 could be a viable alternative.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Service Philosophy as Wisdom for Human Society Development (인류사회 발전 지혜로서의 서비스철학)

  • Hyunsoo Kim
    • Journal of Service Research and Studies
    • /
    • v.12 no.4
    • /
    • pp.1-18
    • /
    • 2022
  • This study was conducted to prove that the service philosophy is the development principle of human society in the service age. From ancient times to the present, the service philosophy was tried to show the wisdom of the development of human society in all earth spaces including the East and the West. In addition, it tried to prove that the service philosophy was at the center of the development wisdom of many countries and individuals who flickered on all space on earth and all human time. The study showed that the differences between countries were in software rather than hardware. Furthermore, it was analyzed that countries with a service philosophy embedded in the center of software such as spirit and culture made a great contribution to human society. The cases of Greece and Rome, the Republic of Venice, the Republic of the Netherlands, followed by the United States and modern Korea prove this, and the Soviet Union can be seen to disprove it. The former was a society in which state-run software was strong, and the latter was a society in which hardware was strong. There is a big difference between the case of the state, which citizens have autonomously organized and operated, and the case of the upper-level state-led operation. Since the leadership of the upper classes is not based on the service philosophy, the accumulated software power is weak, so it can be said that the accumulation of wisdom in human society is weak. Therefore, while the essence of human society so far has been a society of self-centered animal ecosystems led by selfishness, the human society in the service age from now on can be said to be a society of plant ecosystems where mutual respect and self-centeredness coexist. Just as the society centered on the service philosophy in the past human society prospered and left a greater legacy to mankind, it is suggested that the human society in the future service era should be a human society of a plant ecosystem centered on the service philosophy. Further in-depth studies related to this are needed in the future.

Benchmark Results of a Monte Carlo Treatment Planning system (몬데카를로 기반 치료계획시스템의 성능평가)

  • Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. To compare the speed and accuracies of dose calculations between different developed codes, a benchmark tests were proposed at the XIIth ICCR (International Conference on the use of Computers in Radiation Therapy, Heidelberg, Germany 2000). A Monte Carlo treatment planning comprised of 28 various Intel Pentium CPUs was implemented for routine clinical use. The purpose of this study was to evaluate the performance of our system using the above benchmark tests. The benchmark procedures are comprised of three parts. a) speed of photon beams dose calculation inside a given phantom of 30.5 cm$\times$39.5 cm $\times$ 30 cm deep and filled with 5 ㎣ voxels within 2% statistical uncertainty. b) speed of electron beams dose calculation inside the same phantom as that of the photon beams. c) accuracy of photon and electron beam calculation inside heterogeneous slab phantom compared with the reference results of EGS4/PRESTA calculation. As results of the speed benchmark tests, it took 5.5 minutes to achieve less than 2% statistical uncertainty for 18 MV photon beams. Though the net calculation for electron beams was an order of faster than the photon beam, the overall calculation time was similar to that of photon beam case due to the overhead time to maintain parallel processing. Since our Monte Carlo code is EGSnrc, which is an improved version of EGS4, the accuracy tests of our system showed, as expected, very good agreement with the reference data. In conclusion, our Monte Carlo treatment planning system shows clinically meaningful results. Though other more efficient codes are developed such like MCDOSE and VMC++, BEAMnrc based on EGSnrc code system may be used for routine clinical Monte Carlo treatment planning in conjunction with clustering technique.

  • PDF

Multiple SL-AVS(Small size & Low power Around View System) Synchronization Maintenance Method (다중 SL-AVS 동기화 유지기법)

  • Park, Hyun-Moon;Park, Soo-Huyn;Seo, Hae-Moon;Park, Woo-Chool
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.73-82
    • /
    • 2009
  • Due to the many advantages including low price, low power consumption, and miniaturization, the CMOS camera has been utilized in many applications, including mobile phones, the automotive industry, medical sciences and sensoring, robotic controls, and research in the security field. In particular, the 360 degree omni-directional camera when utilized in multi-camera applications has displayed issues of software nature, interface communication management, delays, and a complicated image display control. Other issues include energy management problems, and miniaturization of a multi-camera in the hardware field. Traditional CMOS camera systems are comprised of an embedded system that consists of a high-performance MCU enabling a camera to send and receive images and a multi-layer system similar to an individual control system that consists of the camera's high performance Micro Controller Unit. We proposed the SL-AVS (Small Size/Low power Around-View System) to be able to control a camera while collecting image data using a high speed synchronization technique on the foundation of a single layer low performance MCU. It is an initial model of the omni-directional camera that takes images from a 360 view drawing from several CMOS camera utilizing a 110 degree view. We then connected a single MCU with four low-power CMOS cameras and implemented controls that include synchronization, controlling, and transmit/receive functions of individual camera compared with the traditional system. The synchronization of the respective cameras were controlled and then memorized by handling each interrupt through the MCU. We were able to improve the efficiency of data transmission that minimizes re-synchronization amongst a target, the CMOS camera, and the MCU. Further, depending on the choice of users, respective or groups of images divided into 4 domains were then provided with a target. We finally analyzed and compared the performance of the developed camera system including the synchronization and time of data transfer and image data loss, etc.

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.