일상생활에서 컴퓨터의 상용화를 고려해 보면, 이제 책도 전자출판 형태로 이용가능해졌다는 것은 놀라운 일이 아니다. pc는 불앞에 두면 망가지기 때문에 아직도 조금은 거추장스럽다(목욕탕에 가지고 들어가도 위험하다). 문학을 전자형태로 접근하는 것에 대해서는 아직도 얘기할 여지가 많이 있다. 현재로서는 고전을 공부하는 사람들이 주로 관심을 가지는 것 같다.
본 연구는 영화 콘텐츠의 배경(공간적/시간적)에 해당하는 키워드를 자동으로 추출하는 기법을 제안한다. 제안된 기법은 영화 콘텐츠들의 리뷰 텍스트 데이터를 웹 상으로부터 수집하는 과정, 수집된 텍스트 리뷰 데이터의 전처리 과정에 해당하는 형태소 분석 및 개체명인식 과정, 마지막으로 통계적 기법을 이용하여 최종적으로 배경에 해당하는 단어를 선택하는 과정으로 이루어진다. 자동으로 추출된 배경 정보는 사용자 평가를 통하여 정확도를 측정하였으며, 자동 생성된 배경 정보를 이용하여 영화 콘텐츠의 검색 및 추천 등에 다양하게 사용될 수 있을 것으로 예상된다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.480-484
/
2022
텍스트 분류는 입력받은 텍스트가 어느 종류의 범주에 속하는지 구분하는 것이다. 분류 모델에 있어서 좋은 성능을 나타내기 위해서는 충분한 양의 데이터 셋이 필요함을 많은 연구에서 보이고 있다. 이에 따라 데이터 증강기법을 소개하는 많은 연구가 진행되었지만, 실제로 사용하기 위한 모델에 곧바로 적용하기에는 여러 가지 문제점들이 존재한다. 본 논문에서는 데이터 증강을 위해 스타일 변환 기법을 이용하였고, 그 결과 기존 방법 대비 한국어 감성 분류의 성능을 높였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.197-202
/
2019
토큰화는 입력 텍스트를 더 작은 단위의 텍스트로 분절하는 과정으로 주로 기계 학습 과정의 효율화를 위해 수행되는 전처리 작업이다. 현재까지 자연어 처리 분야 과업에 적용하기 위해 다양한 토큰화 방법이 제안되어 왔으나, 주로 텍스트를 효율적으로 분절하는데 초점을 맞춘 연구만이 이루어져 왔을 뿐, 한국어 데이터를 대상으로 최신 기계 학습 기법을 적용하고자 할 때 적합한 토큰화 방법이 무엇일지 탐구 해보기 위한 연구는 거의 이루어지지 않았다. 본 논문에서는 한국어 데이터를 대상으로 최신 기계 학습 기법인 전이 학습 기반의 자연어 처리 방법론을 적용하는데 있어 가장 적합한 토큰화 방법이 무엇인지 알아보기 위한 탐구 연구를 진행했다. 실험을 위해서는 대표적인 전이 학습 모형이면서 가장 좋은 성능을 보이고 있는 모형인 BERT를 이용했으며, 최종 성능 비교를 위해 토큰화 방법에 따라 성능이 크게 좌우되는 과업 중 하나인 기계 독해 과업을 채택했다. 비교 실험을 위한 토큰화 방법으로는 통상적으로 사용되는 음절, 어절, 형태소 단위뿐만 아니라 최근 각광을 받고 있는 토큰화 방식인 Byte Pair Encoding (BPE)를 채택했으며, 이와 더불어 새로운 토큰화 방법인 형태소 분절 단위 위에 BPE를 적용하는 혼합 토큰화 방법을 제안 한 뒤 성능 비교를 실시했다. 실험 결과, 어휘집 축소 효과 및 언어 모델의 퍼플렉시티 관점에서는 음절 단위 토큰화가 우수한 성능을 보였으나, 토큰 자체의 의미 내포 능력이 중요한 기계 독해 과업의 경우 형태소 단위의 토큰화가 우수한 성능을 보임을 확인할 수 있었다. 또한, BPE 토큰화가 종합적으로 우수한 성능을 보이는 가운데, 본 연구에서 새로이 제안한 형태소 분절과 BPE를 동시에 이용하는 혼합 토큰화 방법이 가장 우수한 성능을 보임을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.394-399
/
2018
본 연구는 SNS 텍스트에서 형태소 분석기로 분석되지 않는 비정규토큰 유형 중 고빈도로 나타나는 의존명사 내포 어형의 형태소를 인식할 수 있는 LGG 기반 패턴문법 사전 구축과 그 성능을 평가하는 것을 목표로 한다. SNS 텍스트에서는 기존의 정형화된 텍스트와 달리, 띄어쓰기 오류로 인한 미분석어가 매우 높은 빈도로 나타나는데, 특히 의존명사를 포함한 유형이 20% 이상을 차지하며 가장 빈번한 것으로 나타났다. 이에 본 연구에서는 의존명사를 내포한 비정규토큰의 띄어쓰기 오류 문제를 효과적으로 처리하기 위해, 부분 문법 그래프(Local Grammar Graph: LGG) 프레임에 기반한 패턴문법 사전을 구축하였다. 이를 SNS 코퍼스에 적용하여 성능을 평가한 결과, 정확률 91.28%, 재현율 89%, 조화 평균 90.13%의 성능을 통해 본 연구의 접근 방법론의 유용성과 구축 자원의 실효성을 입증하였다.
SGML(Standard Generalized Markup Language) and its application to full-text database including a table, a figure and a picture are explained. A structure of SGML based full-text database Is defined by DTD(document type definition) written in SGML, and full-text itself is described with generalized markup depending on DTD. This article explains how to represent a document structure : a hierarchical structure like a chapter, a section, or a paragraph, or non-hierarchical(referencial) structure like a note, a table, a figure or a picture. Merits of SGML, electronic publishing, a retrieval system or hypertext and SGML tools are also described.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.87-90
/
2020
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.545-550
/
2024
In a society undergoing rapid change, modern individuals are facing various stresses, and there's a noticeable increase in mental health treatments for children as well. For the psychological well-being of children, it's crucial to swiftly discern their emotional states. However, this proves challenging as young children often articulate their emotions using limited vocabulary. This paper aims to categorize children's psychological states into four emotions: depression, anxiety, loneliness, and aggression. We propose a method for constructing an emotion dictionary tailored for children based on assessments from child psychology experts.
Proceedings of the Korean Biblia Society for Library and Information Science Conference
/
2002.10a
/
pp.7-23
/
2002
공공도서관의 미래는 전자화된 정보의 통신 체계 확립과 확산된 컴퓨터의 보급으로 인하여 급격한 변화를 마지하게 될 것이다. 변화의 핵심에는 "텍스트성의 종언"과 "가상세계의 공유된 환각"의 가능성이 역동적인 작용력으로 잠복되어 있다. 공공도서관은 이들 두 가지의 변인이 초래하는 시대에 어떻게 존재하여야 하는지를 고찰하여 보려한다. 먼저 탈 구조주의이론이 제기하는 "텍스트성의 종언"이라는 명제를 살펴보고자 한다. 다음으로 사이버 스페이스의 무한 가능성에 대한 이해를 설명한다. 이를 통하여 공공도서관이 있어야 할 존재양식을 제시하고자 한다. 이러한 시도는 무모한 모험이 될 것이다. 그러나 장래에 대비하기 위한 방향을 설정하는 데에는 유용한 관찰이 될 수 있을것이다.향을 설정하는 데에는 유용한 관찰이 될 수 있을것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.