• Title/Summary/Keyword: 전자팽창밸브

Search Result 59, Processing Time 0.027 seconds

Development of the Dynamic Simulation Program for the Multi-Inverter Heat Pump Air-Conditioner (멀티 인버터 히트펌프의 동특성 해석 프로그램의 개발)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1079-1088
    • /
    • 2001
  • A dynamic simulation model was developed to analyse the transient characteristics of a multi-inverter heat pump. The programs included a basic air conditioning system such as a evaporator, condenser, compressor, linear electronic expansion valve (LEV) and by-pass circuit. The theoretical model was derived from mass conservation and energy conservation equations to predict the performance of the multi-inverter heat pump at various operating conditions. Calculated results were compared with the values obtained from the experiments at different operation frequencies of compressor, area of the LEV and configuration of indoor units operation. The results of the simulation model showed a good agreement with the experimental ones, so that the model could be used as an efficient tool for thermodynamic design and control factor design of air-conditioners.

  • PDF

A System Operating Algorithm for the Effective Operation of a Multi-type Air-conditioning System (멀티형공조시스템의 효과적인 운전을 위한 시스템운전알고리즘)

  • Han Do-Young;Park Kwan-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.587-595
    • /
    • 2006
  • A system operating algorithm was developed for the effective operation of a multi-type air-conditioning system. The system operating algorithm includes control algorithms for a safety mode, an initial operating mode, a stabilization mode, a fault diagnosis mode, an efficiency mode, and a tracking mode. Various tests were performed to show the effectiveness of these algorithms. Tests showed good results for the operation of a multi-type air-conditioning system. Therefore, these algorithms developed for this study may be used for the effective control of a multi-type air-conditioning system.

An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles (무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

Capacity Modulation of a Multi-Type Heat Pump System Using PID Control (PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 정대성;김민성;김민수;이원용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

Studies on Performance of CO2 Water Heater by Numerical Modeling (수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구)

  • Park, Han Vit;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Simulation on the Heating Performance of a 2-Stage Compression Heat Pump System Using River Water (하천수열원을 이용한 2단압축 열펌프의 난방성능 시뮬레이션)

  • Park Chasik;Kim Bohyun;Kim Yongchan;Lee Young Soo;Bang Ki-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1005-1013
    • /
    • 2005
  • The use of river water as a heat source of a heat pump has the advantage in the performance compared to the use of atmospheric air because the temperature variation of river water over the year is relatively small. In this study, the performance of the heat pump system using river water as a heat source was numerically investigated. A simulation model for the 2-stage compression heat pump system was developed with each component model composed of compressors, heat exchangers, a flash tank and electronic expansion devices. The peformance of the heat pump system using river water was improved by $50\%$ compared to that using atmospheric air in winter conditions.

Development of Performance Evaluation and Control System of Multi-Air Conditioner (멀티에어컨의 성능평가 및 제어시스템 개발에 대한 연구)

  • Lee H.W.;Ko K.W.;Gwon Yeong-Cheol;Lee J.H.;Lee Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1107-1114
    • /
    • 2005
  • The running condition of multi-system air conditioner is prone to vary largely as it is designed for individual conditioning in each space of middle and small sized buildings. This leads to overcooling in case of partial load run, while the lack of capacity happens in case of full load run. Besides these, there exist such problems as instabilities due to the uneven refrigerant distribution caused by fluctuation of load and the change in piping line. Based upon the basic study on the function characteristics found in parts needed for maximized system working design in order to troubleshoot, the system functioning pattern should be identified through the different tests with various operating circumstances and the analysis models should be developed. With this ground, the control logic has to be made to have a control over capacity and make possible the efficient distribution of refrigerant.

  • PDF

An Experimental Study on the Performance of a Heat Pump for the Cold Climate (한랭지용 열펌프의 저온난방 성능에 관한 실험적 연구)

  • Ju Jeong-Dong;Bae Kyung-Su;Hwang Young-Kyu;Lee Yun-Yong;Jeong Gyoo-Ha;Oh Sang-Kyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • The present study concerns an experimental study of a R-22 heat pump system consisted of liquid and liquid heat exchangers. The test was performed for various systems of a single-, tandem-, and two stage-cycle at the same environmental conditions of temperature. Various experiments of the heat pump system were peformed to compare the heating capacity and COP, when the outdoor temperature is near $-15^{\circ}C$ and the indoor temperature is $20^{\circ}C.$ As the results of the present study, the system of Tandem(parallel) cycle showed the best heating performance, while the discharge temperature of refrigerant was too high. In case of the system of two stage cycle, the performance characteristics were significantly improved by employing the inter cooler.