• Title/Summary/Keyword: 전자파유속계

Search Result 37, Processing Time 0.034 seconds

Analysis on Correlation Coefficient of Surface Image Velocimeter(SIV) for improved accutacy (정확도 향상을 위한 표면영상유속계(SIV)의 상관계수 분석)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yoon, Kwon-kyu;Kim, Seo-jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.381-381
    • /
    • 2015
  • 표면영상유속계측법(Surface Image Velocimeter; SIV)은 영상분석기법의 일종으로 하천 표면의 유동을 영상저장장치로 기록하고 연속되는 이미지상의 입자이동을 계산하여 유속을 산정하는 방법이다. 그러나 표면영상유속계를 활용한 유속분석과정에서 현장 상황에 따라 많은 오차 요인들이 있을 수 있기 때문에 계산한 유속 산정 결과를 그대로 사용하면 정확도가 낮아질 수 있다. 특히 야간 영상과 같은 영상의 화질이 떨어지는 경우에는 유속 산정 결과를 필터링해서 사용해야 한다. 이는 순간 유속장을 분석하는 과정에서 획득된 이미지에 따라 분석된 유속벡터가 평균 유속보다 과다하게 크거나 상관계수 값이 너무 작은 경우가 포함되기 때문이다. 이 연구에서는 제주도 외도천 외도정수장에서 2013년 5월 27일 집중호우에 의한 유출 발생 주 야간 유출영상자료를 획득하여 표면영상유속계(SIV)와 ADCP를 활용하여 유량을 분석하고, 동시에 고정식 전자파 표면유속계인 Kalesto 관측 유량과 비교 분석하였다. 비교과정에서 제주도는 댐방류량과 같은 유량의 참값이 없으므로 각각 관측기기의 상대적인 비교를 하여 경향성을 분석하였다. 분석결과 주간유출영상은 상관계수가 0.6~0.7범위에 해당하는 유속이 전체 59개의 유속벡터 중 6.8%로 나타났으며, 0.7~0.8범위가 13.6%, 0.8~0.9범위가 18.6%, 0.9~1.0범위가 61.0%의 퍼센트를 나타났다. 야간유출영상을 주간유출영상과 비교해보면 0.6~0.7범위에 해당하는 상관계수가 6.8% 높게 분석되었으며, 반대로 0.9~1.0범위에 해당하는 상관계수는 17% 낮게 분석되었다. 이와 같은 결과는 야간유출영상이 주간유출영상에 비해 영상의 질이 떨어짐을 나타내며 표면영상유속계를 적용하여 유량을 산정하는 과정에서 획득되는 영상에 따라 상관계수에 대한 합리적인 필터링 과정이 필요하다.

  • PDF

Appropriateness Check of the Existing Depth-averaged Velocity Conversion Factor in River Discharge Measurement Using Surface Velocity (표면유속을 이용한 하천유량측정에 있어서 기존 수심평균유속환산계수의 적정성 검토)

  • Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1887-1891
    • /
    • 2010
  • 전자파표면유속계를 이용한 홍수유속측정에 있어서 수심평균유속환산계수로 0.85를 표면유속에 일률적으로 적용하도록 제시하고 있다. 그 동안 이의 적절성 여부에 대한 논의가 꾸준히 지속되어져 왔다. 이에 전자파 표면유속계를 개발하고 상품화하여 보급시킨 개발 주체의 입장에서 이에 대한 검증을 시도하였다. 이의 검증을 위해서 가장 중요한 것은 정해진 측정지점의 유량측정시각의 정확한 유량을 파악해야 함은 필수조건이다. 하지만 유량측정지점의 유량의 참값은 알기는 참으로 어려운 일이다. 이에 지금까지는 댐의 방류량을 참값이라고 가정을 하고 여러 가지 기기를 이용한 유량측정을 실시하여 각 기기의 측정오차를 비교하는 기준유량으로 댐방류량을 이용하였다. 따라서 본 연구에서는 방류량의 정확성 파악에 의하여 수심평균유속환산계수의 적정성 여부를 검토하고자 하였다. 또한 이에 대한 이론적인 접근의 방법으로서 유속분포곡선식으로부터 수심평균유속환산계수를 산정하여 이를 기존에 표면유속을 평균유속으로 환산하기 위해서 적용하였던 계수와 비교를 하였다. 기존의 수심평균유속환산계수로 이용한 0.85에 대한 이론적인 검증을 위해서 Power law형의 유속분포식으로부터 수심평균유속환산계수를 유도한 결과 하상의 재료에 따라 0.833 (거친 하상)~0.875 (부드러운 하상)의 범위에 분포하였다. 이는 환산계수로 이용하고 있는 0.85는 유속분포가 크게 변동하지 않은 경우에 수심 평균유속을 환산하는데 이용함에 무리가 없음을 보여준다. 기존의 대청댐 방류량을 이용한 수심평균유속환산 계수를 산정한 결과를 분석한 결과 환산계수가 0.828~0.868의 범위에 분포하고 있다. 즉 기존의 수심평균유속환산계수로 이용을 하고 있는 0.85와 비교했을때 ${\pm}3%$의 오차를 보이고 있음을 알 수 있다. 대청댐 방류량에 대한 검증을 위해서 여러 가지 기기를 이용한 동시 유량 측정을 실시하였고, 전자파표면유속계로 측정한 표면유속에 기존의 수심평균유속환산계수 0.85를 적용했을때의 유량산정 결과를 다른 방법에 의한 측정 결과 및 방류량과 비교를 실시하였다. ADCP 측정은 유량조사사업단과 한국수자원공사 충청지역본부의 도움을 받아 실시하였는데, 유량조사사업단은 9회 측정하여 평균한 유량이 242.0 cms, 충청지역본부에서는 6회 측정하여 평균한 결과가 234.6 cms이었고, 전자파표면유속계로 측정한 표면유속을 이용하여 산정한 유량이 249.0 cms이었으며, 동시유량 측정당시 방류량은 242 cms이었다. ADCP를 이용한 유량측정에 있어서, 각 측정시의 유량측정 오차가 최대 20% 까지 나타나고 있다. 반면 대청댐의 발전 방류량은 거의 일정한 수준을 유지했던 것을 감안할 경우 유량측정 기간에 하류의 조정지댐으로 인한 배수효과의 영향으로 ADCP를 이용한 유량측정값에 변동이 발생한 것으로 추측된다. 전반적으로 부자를 제외하고는 사용된 유량측정 방법들이 거의 동일한 값을 보임을 알 수 있다. 또한 표면유속에 기존의 환산계수를 적용하여도 유량산정이 다른 방법과 유사하게 산정됨을 알 수 있다.

  • PDF

A review on the mean velocity conversion coefficient of surface velocity (표면유속의 평균유속 산정을 위한 환산계수에 대한 고찰)

  • Lee, Sin Jae;Lee, Si Yoon;Park, Jun Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.272-272
    • /
    • 2018
  • 하천유량 측정방법 중 표면유속을 측정하는 방법은 수표면의 유속만을 측정하기 때문에 평균 유속을 산정하기 위해서는 평균유속 환산계수를 적용해야 한다. 일반적으로 표면유속을 평균유속으로 산정하기 위하여 이론 및 실험을 통해 제시된 환산계수는 0.84~0.95의 범위에서 현장 여건을 고려하여 적용하도록 되어 있다. 환산계수는 현장에서 수위별(또는 유량별) 직접 유속분포를 측정하여 산정해야 한다. 그러나 표면유속 측정이 주로 이루어지는 홍수사상에서는 유속이 빠르기 때문에 유속분포를 측정하고 분석하는 것이 어려우 국내에서는 0.85를 환산계수로 사용하고 있다. 본 연구에서는 2016~2017년 국토교통부 수문조사사업을 통해 8개 수위관측소에서 전자파표면유속계(MU2720)로 측정된 40개의 자료와 Price AA, ADCP, 부자 등을 이용하여 측정된 자료 기반으로 개발된 수위-유량관계곡선식을 이용하여 표면유속을 평균유속으로 산정하기 위한 환산계수(환산계수 = 수위-유량관계곡선의 유량 / 표면유속으로 산정한 유량)를 검토하였다. 또한 전자파표면유속계와 비교 유속계로 동시에 측정한 3개의 자료를 이용하여 환산계수를 직접 검토하였다. 여기서 표면유속 및 평균유속은 한 측선의 유속이 아닌 전체 단면에 대한 평균유속이다. 그 결과 표면유속을 평균유속으로 환산하기 위한 환산계수는 수위-유량관계곡선식을 이용한 경우 0.76~0.95(평균 0.85, 표준편차 0.04)로 산정되었다. 또한 비교 유속계와 동시에 측정한 3개 자료에 대해 환산계수를 산정한 결과 평균 0.85(0.82~0.91)로 산정되었다. 본 연구의 결과는 기존에 제시된 환산계수의 범위와 크게 다르지 않았으며, 일반적으로 환산계수로 사용되는 0.85의 값은 해당 지점의 유속분포 정보가 없을 때에는 유효할 것으로 판단된다.

  • PDF

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Parameter Estimation of Chiu's Two Dimensional Velocity Distribution Equations (Chiu-2차원 유속분포식의 매개변수 추정)

  • Kim, Yongseok;Yang, Sungkee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.366-366
    • /
    • 2017
  • 하천의 유량관측 자료는 지표수자원의 확보와 수공구조물의 설계를 위해 가장 기초적인 수문자료로써 정밀하고 지속적인 관측을 요구한다. 최근 유량 관측법은 접촉식 유속측정 방법의 단점을 보완한 전자파 표면유속계나 영상분석기법을 적용한 표면영상유속계(SIV)가 활용되고 있다. 이들 관측장비는 표면유속 관측법에 의해 유량을 측정하므로 보다 정밀한 유량자료를 확보하기 위해서는 측정 영역의 표면유속과 단면의 평균유속에 대한 해석이 필요하다. 이 연구에서는 제주도 남부지역에 위치한 강정천을 대상으로 2011년 7월부터 2015년 6월 까지 월 1~2회 현장관측한 ADCP 자료를 활용하여 Chiu(1987)가 제안한 2차원 유속분포식의 매개변수를 추정하여 정밀한 유량을 산정하였다. 또한 표면영상유속계(SIV)로 산정된 표면유속을 Chiu-2 차원 유속분포식에서 평균유속으로 환산하여 기존의 표면유속을 일률적으로 적용한 수심평균유속 환산계수인 0.85의 적용 값과 비교 분석하였다. 대상하천의 현장에서 72회 관측된 ADCP 자료를 활용하여 각각의 최대유속과 평균유속을 분석하고 엔트로피 계수(M)를 산정한 결과와 유속의 공간적 분포를 모델링하기 위해 제시되는 $_{urf}$를 산정하였으며, 산정된 계수 값을 이용하여 표면유속을 계산한 결과와 ADCP의 관측된 표면유속의 $^2$는 0.874로 나타났다. 이러한 결과는 Chiu-2차원 유속분포식을 연구대상하천에 적용하는 과정에서 추정되는 매개변수의 평균값 사용에 대한 타당성을 보여준다. 이 후 추정된 하천매개변수를 하천현장에 적용성 확인을 위해 강정천의 동일 관측지점에서 표면영상유속계(SIV)를 사용한 표면유속과 유량을 산정함과 동시에 ADCP에 의한 유속 및 유량과 비교 분석하였다. 표면영상유속계(SIV)로 분석된 유속 벡터를 Chiu-2차원 유속분포식에 적용하여 산정된 유량과 기존의 수심평균유속환산계수 0.85를 적용한 유량은 각각 $0.7171m^3/s$과 0$0.5758m^3/s$였다. ADCP 평균유량 $0.6664m^3/s$과의 오차율은 각각 7.63%, 13.64%로 나타나 Chiu-2차원 유속분포식을 적용한 유량이 수심평균유속환산계수 0.85를 적용한 유량에 비해 작은 오차율을 보였다.

  • PDF

Inter-comparison of Accuracy of Discharge Measurement Methods - A Case Study Performed in the Dalcheon River Downstream of the Goesan Dam- (유량측정 방법의 정확도 분석 -괴산댐 하류 달천 적용 사례를 중심으로-)

  • Lee, Chan-Joo;Kim, Dong-Gu;Kwon, Sung-Il;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1039-1050
    • /
    • 2010
  • Relative accuracy of six discharge measurement methods-velocity-area method, rod-float method, ADCP moving-vessel method, ADCP fixed-vessel method, electromagnetic wave surface velocimeter (EWSV), LSPIV- is evaluated by comparing discharges measured by them with dam released discharges. Data from 39 times of concurrent discharge measurement campaigns are analyzed. Except the rod-float method, measured discharges show absolute errors less than 6.2% with dam discharges. When the four methods is evaluated by being compared with discharges measured with the conventional velocity-area method, discharges with electromagnetic wave surface velocimetry shows 7.35% of absolute errors and other three methods shows absolute errors less than 6%. The rod-float method, which shows large discrepancy compared with dam and velocity-area method, need complementary verification.

Applecation of emprical index velocity equation by local non-contact surface velocity measurement (표면유속 측정을 통한 지표-평균유속 관계식 일반화 적용성 검토)

  • Lee, Sin Jae;Lee, Si Yoon;Lee, Dong Kyue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.274-274
    • /
    • 2019
  • 최근 하천에서 실시간 유량측정을 위하여 유수에 접촉 또는 비접촉 유속측정방식을 이용한 자동유량측정시스템이 설치 운영되고 있으며, 주로 지표유속법(index velocity method)이 적용되고 있다. 지표유속법 적용을 위해서는 다양한 범위에서 측정된 지표유속과 평균유속관계를 분석해야한다. 그러나 유속계 설치초기에는 측정된 유속이 없기 때문에 측정된 유량을 신뢰하기가 어렵다. 본 연구에서는 비접촉 유속계인 전자파표면유속계(MU2720)로 측정된 표면유속과 지표유속법을 이용하여 일반적인 하천에서 비접촉(레이다 또는 전자파표면유속계 등) 방식에 의한 자동유량측정 시스템 운영초기에 적용 가능한 경험적 지표-평균유속 관계식을 개발하여 검토하였다. 연구 대상지점은 한탄강(1개소), 홍천강(3개소), 내린천(2개소), 북천(1개소), 탄천(1개소), 섬강(1개소) 등 6개 하천 9개 지점이며, 2016~2018년에 지점별로 측정된 총 103개(6~26개)의 측정자료를 이용하여 분석하였다. 지점별 최대유속이 발생하는 지표유속과 평균유속과의 관계를 분석한 결과 결정계수(R2)가 0.8848(원주시(문막교))~0.9874(서울시(대곡교))로 평균 0.9626를 보여 매우 높은 상관성을 보였다. 또한 9개 지점의 모든 유속자료를 통합하여 지표-평균유속 관계식을 개발하였다. 그 결과 결정계수는 0.9247를 보였으며, 유속분포가 일반적이지 않은 홍천강의 홍천군(반곡교), 섬강의 원주시(문막교) 지점 자료를 제외한 7개 지점의 자료만으로 지표-평균유속 관계식을 개발한 결과 결정계수가 0.9603으로 매우 높은 상관성을 보였다. 이러한 결과를 볼 때 일반적인 유속분포(포물선형태)를 가진 하천은 본 연구에서 7개 지점으로 개발된 지표-평균유속 관계식을 운영초기에 활용할 수 있을 것으로 판단된다.

  • PDF

Calculation of Mean velocity conversion coefficient for Non-contact measurement method (비접촉식 측정방법을 위한 평균유속환산계수 산정)

  • Lee, Tae Hee;Kang, Jong Wan;Min, Sang Ki;Park, Hyung Jae;Lee, Ki Sung;Lee, Sin Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.260-260
    • /
    • 2022
  • 최근 홍수기 유량측정방법은 기존 봉부자를 이용한 접촉식 측정방법에서 영상촬영, 레이더 등 첨단기술을 이용한 비접촉식 표면유속 측정방법으로 변화하고 있다. 비접촉식 측정방법은 각 기술마다 표면유속 측정방법의 차이가 있으나 평균유속환산계수를 적용하여 평균유속을 산정하는 공통적인 과정을 수행한다. 평균유속환산계수는 하천의 각 횡측선 수심-유속분포를 일반적인 분포로 가정하고 표면유속에 0.85를 곱하여 평균유속을 산정한다(Rantz, 1982). 그러나 하천의 측정위치 및 흐름특성에 따라 유속분포가 변화하기 때문에 국내외 많은 연구에서 환산계수의 범위를 0.72에서 1.72까지 제시한 바 있다. 따라서 환산계수 0.85의 일률적인 적용은 실제 유량과 측정 유량의 차이가 발생할 수 있어 측정조건의 적절한 환산계수 산정이 필요하다. 본 연구에서는 20년, 21년 금강의 지류인 봉황천에 위치한 금산군(황풍교) 관측소에서 전자파표면유속계를 이용해 측정한 표면유속과 ADCP를 이용하여 동시 측정한 평균유속의 비교를 통해 환산계수를 산정하였다. 또한 금강 본류의 금산군(제원대교) 관측소에서 저중수위에서 ADCP를 이용하여 측정한 평균유속 분포와 고수위에서 전자파표면유속계로 측정한 표면유속과의 경향성 검토를 통해 평균유속환산계수를 산정하였다. 본 연구에서는 지점의 평균유속환산계수를 단일 값으로 산정하였지만, 추후 하천 흐름특성의 변화를 고려한 평균유속환산계수 산정 기법 개발을 통해 보다 정확한 홍수량을 산정할 수 있을 것으로 판단된다.

  • PDF

Assessment of Depth-averaged Velocity Conversion Factors in a Natural River with Measured Velocities (자연하천의 유속측정에 의한 수심평균유속환산계수의 산정)

  • Kim, Young-Sung;Lee, Hyun-Seok;Yang, Jae-Rheen;Lee, Yo-Sang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1897-1901
    • /
    • 2010
  • 이동식 전자파표면유속계를 이용한 홍수유량의 산정을 위해서 임의의 유량측정지점에서 측정한 표면유속 값에 수심평균유속환산계수 0.85를 적용하여 그 지점의 평균유속을 계산하고 있다. 이로 인해 각 지점에서 흐름조건 및 기상학적으로 요인으로 인한 이 계수의 변동성을 고려하지 않은 상태로 유량을 산정하게 되어 각 흐름조건을 고려한 유량산정을 할 수 없는 실정이다. 이에 하천 현장에서 표면유속과 수심별유속의 실측 자료를 이용하여 흐름조건에 따른 표면유속과 평균유속의 관계를 파악하고자 하였다. 이를 위하여 용담 수자원시험유역의 동향지점에서 하천을 횡단하며 바닥에서 수표면까지 수심방향으로 0.05~0.10 m의 간격으로 프로펠러 유속계를 이용하여 정밀법으로 각 수심에서의 유속을 측정하였다. 정밀측정된 수심별 유속을 이용하여 평균유속을 산정하고 이를 수체 (water column)의 가장 최상층에서 측정한 유속을 표면유속으로 가정한후 이로부터 수심평균유속환산계수를 산정하여 흐름조건에 따른 계수의 변화를 조사하였다. 하천 현장에서 흐름조건의 변화에 따른 표면유속과 수심별유속의 정밀측정을 통한 이들 깊이별 유속의 변화여부를 용담수자원시험유역의 동향지점에서 현장조사를 실시하였다. 측정당시 풍속이 느려서 (1.5~3.1 m/s) 바람으로 인한 유속에 미치는 영향이 수심별 유속분포상으로는 거의 나타나지 않았다. 다만 양안에서 평균유속과 표면유속이 역전되는 현상이 발생되었는데 이는 벽면 마찰에 바닥마찰의 영향이 추가됨에 따른 것으로 판단된다. 수심별 유속측정 결과를 전체적으로 분석한 결과 환산계수가 0.632~1.352로 넓게 분포하고 있다. 환산계수가 1.0 이상인 경우는 양안에 인접한 두 지점인데, 이들 두 경우는 유속분포가 이론적인 유속분포와는 상반된 유속이 측정 - 표면유속이 수심평균유속보다 느림 - 되었다. 환산계수가 0.6~0.8 사이에서 형성된 경우는 표면유속이 평균유속보다 25~55% 정도 빠르게 나타나고 있다. 전제 측정결과를 검토해보면, 전반적으로 양안에 인접한 측선에서 표면유속이 평균유속보다 느려지는 현상이 나타나고 있다. 또한 유속이 1.0 m/s 이상인 경우에 0.677~0.790의 환산계수 값을 보이는데 이 경우 수심이 50 cm 이하여서 바닥마찰의 영향이 큰 것으로 판단된다. 다양한 흐름조건별 표면유속과 수심별유속의 측정을 할 수 있는 현장여건 - 유속, 수위 등의 동일흐름 조건에 대해서 -에 많은 부분이 제약되어 이의 정밀분석이 힘든 실정이다. 따라서 이러한 현장측정시의 제약성을 극복하기 위해서 여러 가지 흐름조건을 구현할 수 있는 정밀제어가 가능한 실내실험장치를 이용한 면밀한 분석이 필요하다.

  • PDF

Development of Water Velocity Data Preprocessing Method for PAVOs (PAVOs 활용을 위한 유속데이터 전처리 기법 개발)

  • Soyeon Lim;Youngmoo Yu;Sinjae Lee;Yeongil Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.85-85
    • /
    • 2023
  • 유량 측정을 위해 도섭법, 횡측선법 등의 인력에 의한 방법이 적용되고 있으나, 이는 야간 및 휴일 측정, 인력 부족 등 여러 제약으로 인해 고수위 홍수를 측정하는 데에 한계가 있다. 이를 해결하기 위해 시공간적 제약이 없는 도플러 방식 초음파유속계(Acousitc Doppler Velocity Meter, ADVM)와 자동유속관측시스템(Portable Automatic Velocity Observation System; PAVOs)이 제안되었다. 이 방법들은 교량에 설치된 장치를 통해 실시간으로 유속이 계측되어 시공간적 제약이 없으며 홍수 관리에 유용하게 사용될 수 있다. 실시간으로 계측된 유속 데이터는 오·결측 값이 발생하며 ADVM의 경우 수위-유량관계식을 활용하는 등 전처리 방법이 활용되고 있지만 전자파표면유속계를 활용한 PAVOs 데이터의 전처리 방법에 대한 연구는 부족하다. 따라서 본 연구에서는 PAVOs에서 실시간으로 계측된 유속 데이터의 전 처리 과정(Pre-processing)을 개발하였다. PAVOs를 통해 측정된 데이터는 5분 단위로 10개의 유속이 한번에 측정되며 비정상성(Non-stationary)인 특징을 가진다. 이 데이터의 전처리 과정으로 오·결측값에 대한 처리 및 보간법 적용 이후 10개 값 중 실제 유속을 판단하고 잡음제거(Denoising)를 수행하였다. 이를 강원도 홍천강에 위치한 홍천교에서 계측된 유속 데이터에 적용하였다. 그 결과 데이터의 상승부와 하강부에서 일정한 경향성을 파악할 수 있다. 이 데이터를 통해 산정한 유량과 실측 기반의 평균유속과 관계를 통해 계산한 유량을 비교해 보았을 때 낮은 편차율을 가지는 것을 확인하였다. 전 처리 된 실시간 유속 데이터를 활용한다면 최고수위가 발생하였을 경우 홍수량을 산정할 수 있을 것이다. 또한, 강우 또는 하천 공사에 의해 변동하는 수위-유량관계곡선식을 실시간으로 개발할 수 있을 것이며 이는 효과적인 홍수관리에 큰 역할을 할 수 있을 것이다.

  • PDF