• Title/Summary/Keyword: 전자컴퍼스

Search Result 15, Processing Time 0.021 seconds

A Study on the Ship's Heading Stabilization of GPS Compass Using Electromagnetic Compass (전자자기 컴퍼스를 이용한 GPS 컴퍼스의 선수방위 안정화에 관한 연구)

  • Jo, Hyeon-Jeong;Shin, Hyeong-Il;Lee, Dae-Jae;Hyun, Yun-Ki;Bae, Mun-Ki;Kim, Kwang-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.70-77
    • /
    • 2005
  • The study was results obtained from the trial make of the hybrid GPS-electromagnetic(EM) compass which overcome shortcoming of GPS compass and EM compass. The results were summarized as follows: GPS compass detected the stable ship's heading at 0.1^{\circ}$ intervals with the turning angular velocity of less than 25^{\circ}$/sec in the experiment for the characteristics of turning angular velocity with stepmotor, but in case of over 25^{\circ}$/sec the compass did not detect it. On the contrary, the EM compass always indicated the ship's heading with no connection of the turning angular velocity, however the compass is low accuracy compared with GPS one owing to a compass error. The ship's headings by the hybrid GPS-EM compass were displayed at fixed point and moving by car; if the GPS compass work the headings were displayed by GPS compass, if not, the heading is provided stably by adding or subtracting of a compass error to the heading of EM compass. Also, each ship's heading was derived from not only the GPS compass but also the EM one by add or subtract of the compass errors, and then was worked covariance for the analogy. The results show that the ship's heading of two compasses has been verified the similarity to 95% confidence level.

A Basic Study for Utilization of Autopilot System Using Electromagnetic Compass in a Small Fishing Boat (소형 어선에서 전자자기 컴퍼스를 이용한 항행자동시스템의 실용화에 관한 기초적 연구)

  • Jo, Hyeon-Jeong;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • Experiments were carried out to measure the variation of the compass error on ship's head up bearing by magnetic compass and electromagnetic compass on berthing at the pier in order to obtain a basic information on the utilization of autopilot system using electromagnetic compass in fishing boat. The wooden fishing boat, turned on attracting fish lamps of power consumption 85kW, steering magnetic compass and electromagnetic compass indicated westerly compass error with 7$^{\circ}$ and 13 $^{\circ}$~16$^{\circ}$ respectively. The FRP fishing boat, turned on attracting fish lamps of power consumption 130kW, electromagnetic compass indicated easterly compass error 19$^{\circ}$~23$^{\circ}$. The steel fishing boat, turned on ship's navigation equipments of power consumption 225kW, steering magnetic compass indicated westerly compass error with 16$^{\circ}$. While the difference of compass error using electromagnetic compass indicated westerly compass error with 68$^{\circ}$ on the upper deck when the navigation and fishing equipment turn on compare to turn off the equipment, it had easterly compass error with 16$^{\circ}$, 32$^{\circ}$, 20$^{\circ}$ on the forecastle deck, wheel house and compass deck respectively.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Development of the Electronic compass for Automatic Correction do Deviation (自動自差修正이 가능한 電子컴퍼스의 개발에 관한 연구)

  • Ahn, Young-Wha;Shin, Hyeong-Il;Shirai, Yasuyuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • The Electronic compass made as a pilot model in this research is comprised of a three axis magnetic sensor, an accustar clinometer, and a fiber optic gyro sensor. The results confirming the output character, performance, and the accuracy of the deviation corrects of each sensor are as follows: 1) As for the output character of the three axis magnetic sensor, the magnetic field showed a cosine curve on the X axis, a - sine curve on the Y axis, and constant figures on the Z sensor. The horizontal component H and the vertical component V of the terrestrial magnetism calculated from the output voltage were 33.2${\mu}$T and 23.95${\mu}$T respectively. 2) When the fiber optic gyro sensor is fixed on the electromotive rotation transformation and has made a clockwise rotation with the speed of 10/sec, 20/sec, and 30/sec, the relationship between the output and the rotation angle of the fiber optic gyro sensor showed proportionally constant values. 3) When the magnetic field was induced with a magnet, the deviation before the correction was significant at a high of 25. However, the deviation after the correction using Poisson correction was in the 2 range, significantly lower than before the correction. It was confirmed that automatic deviation corrects are possible with the electronic compass made as a pilot model in this research.

Performance and Manufacture of the Apparatus Generating Artificial Magnetic Field of 3-axis Type (3축형 인공자장발생장치의 제작과 성능에 관한 연구)

  • 이유원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.181-188
    • /
    • 2003
  • The objects of this study were to discuss the performance of its using magnetic compass and to do a trial manufacture of the apparatus generating artificial magnetic field of 3-axis type to assess the performance of compass using terrestrial magnetism in the various magnetic field. The results obtained were summarized as follows: The magnetic field of each axis showed the linearly increase in accordance with the increase of electrical current. Average range difference between measured and calculated values was 0.33∼1.93μT and there were no big difference. The magnitude and direction of magnetic field showed some change in the edge of Helmholtz coil, but it appeared to stabilize in the center. In the horizontal magnetic force of 0.30gauss and 0.40gauss, the measured and calculated values of the damping characteristic of magnetic compass showed a good agreement. However, the confidence level was low at the horizontal magnetic force of 0.50gauss.

A Development of the Obstacle Error Correction Algorithm using PSD And Electronic Compass (PSD와 전자나침반을 이용한 장애물 에러 보정 알고리즘 개발)

  • Lim, Shin-Taek;Chong, Kil-Do;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.433-434
    • /
    • 2008
  • 이 논문은 실내에서 로봇의 주행 시 생기는 오차를 수정하는 것이다. 실내에 있는 장애물(문턱)을 넘을 경우 슬립에 의하여 주행거리와 실제거리의 오차가 생기고 또한 헤드 앵글 값이 변화함에 따라서 차후 엄청난 주행 오차를 발생시키게 된다. 그에 따라 PSD 센서를 이용하여 장애물을 감지하고 감지 후 장애물을 넘을 수 있도록 모터를 제어한다. 또한 PSD를 이용하여 장애물의 크기를 계산한 후 로봇이 장애물을 넘는 동안에 엔코더 값을 받아 들여서 장애물을 넘는 동안에 로봇이 실제 이동한 거리를 측정한다. 그리고 장애물을 넘은 후에 PSD로 계산한 장애물의 크기 값과 엔코더에서 받아들인 값을 비교하여 거리오차를 수정한다. 또한 전자컴퍼스를 이용하여 장애물을 넘기 전에 로봇의 헤드 앵글 값을 구하고, 장애물을 넘은 후에 로봇의 헤드 앵글 값을 구하여 두 개의 값을 비교한다. 두 개의 값의 차이를 측정하여 수정함으로써 헤드 앵글을 오차를 수정할 수 있다.

  • PDF

Basic Research on an Electro-Magnetic Compass Using a Magnetic Detect Elements (자기검출소자를 이용한 전자자기컴퍼스의 기초적 연구)

  • 안영화
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.182-188
    • /
    • 1994
  • In recent years, navigational and fisheries instruments are rapidly advancing. Especially data processing. data transferring and data interchange throughout the digital signals has been in high progress. Even though the ship's heading is also provided by a gyro-compass, an electro-magnetic compass studying by us currently is easy to issue adequate data to instruments requiring the information for the ship's heading. especially in small fishing boats. As the main element of the electro-magnetic compass is a three-axis magnetic sensors, the developing of the high performance sensor is in highly necessity in the beginning. This paper describes on the development of electro-magnetic compass of three-axis fixed type by using three-axis detection new type magnetic sensor without gimbals. even though usual electro-magnetic compass have to need necessarily a gimbal system in order to keep horizontal condition of the compass.

  • PDF