• Title/Summary/Keyword: 전자조사문영상장치

Search Result 7, Processing Time 0.029 seconds

Basic Dose Response of Fluorescent Screen-based Portal Imaging Device (섬광판을 사용하는 조사문영상기구의 기본적인 선량반응성)

  • Yeo, In-Hwan J.;Yohannes, Yonas;Zhu,Yunping
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • Purpose : The purpose of this study is to investigate fundamental aspects of the dose response of fluorescent screen-based electronic portal imaging devices (EPIDS). Materials and Methods : We acquired scanned signal across portal planes as we varied the radiation that entered the EPID by changing the thickness and anatomy of the phantom as well as the air gap between the phantom and the EPID. In addition, we simulated the relative contribution of the scintillation light signal in the EPID system. Results : We have shown that the dose profile across portal planes is a function of the air gap and phantom thickness. We have also found that depending on the density change within the phantom geometry, errors associated with dose response based on the EPID scan can be as high as $7\%$. We also found that scintillation light scattering within the EPID system is an important source of error. Conclusion : This study revealed and demonstrated fundamental characteristics of dose response of EPID, as relative to that of ion chambers. This study showed that EPID based on fluorescent screen cannot be an accurate dosimetry system.

  • PDF

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Location Error of the Dens in a Two-Dimensional Set-up Verification During Head and Neck Radiotherapy (뇌.두경부 방사선치료 시 전자조사문영상장치를 이용한 세트업 오차 확인에서 제2경추 치상돌기 위치의 임상적 의의)

  • Kim, Dong-Hyun;Kim, Won-Taek;Ki, Yong-Gan;Nam, Ji-Ho;Lee, Mi-Ran;Jeon, Ho-Sang;Park, Dal;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Purpose: To assess the degree and clinical impact of location error of the dens on the X-axis during radiotherapy to brain and head and neck tumors. Materials and Methods: Twenty-one patients with brain tumors or head and neck tumors who received three-dimensional conformal radiation therapy or intensity-modulated radiation therapy from January 2009 to June 2010 were included in this study. In comparison two-dimensional verification portal images with initial simulation images, location error of the nasal septum and the dens on the X-axis was measured. The effect of set-up errors of the dens was simulated in the planning system and analyzed with physical dose parameters. Results: A total of 402 portal images were reviewed. The mean location error at the nasal septum was 0.16 mm and at the dens was 0.33 mm (absolute value). Location errors of more than 3 mm were recorded in 43 cases (10.7%) at the nasal septum, compared to 133 cases (33.1%) at the dens. There was no case with a location error more than 5 mm at the nasal septum, compared to 11 cases (2.7%) at the dens. In a dosimetric simulation, a location error more than 5 mm at the dens could induce a reduction in the clinical target volume 1 coverage (V95: 100%${\rightarrow}$87.2%) and overdosing to a critical normal organ (Spinal cord V45: <0.1%${\rightarrow}$12.6%). Conclusion: In both brain and head and neck radiotherapy, a relatively larger set-up error was detected at the dens than the nasal septum when using an electronic portal imaging device. Consideration of the location error of the dens is necessary at the time of the precise radiation beam delivery in two-dimensional verification systems.

The Feasibility Study of MRI-based Radiotherapy Treatment Planning Using Look Up Table (Look Up Table을 이용한 자기공명영상 기반 방사선 치료계획의 타당성 분석 연구)

  • Kim, Shin-Wook;Shin, Hun-Joo;Lee, Young-Kyu;Seo, Jae-Hyuk;Lee, Gi-Woong;Park, Hyeong-Wook;Lee, Jae-Choon;Kim, Ae-Ran;Kim, Ji-Na;Kim, Myong-Ho;Kay, Chul-Seung;Jang, Hong-Seok;Kang, Young-Nam
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.237-242
    • /
    • 2013
  • In the intracranial regions, an accurate delineation of the target volume has been difficult with only the CT data due to poor soft tissue contrast of CT images. Therefore, the magnetic resonance images (MRI) for the delineation of the target volumes were widely used. To calculate dose distributions with MRI-based RTP, the electron density (ED) mapping concept from the diagnostic CT images and the pseudo CT concept from the MRI were introduced. In this study, the look up table (LUT) from the fifteen patients' diagnostic brain MRI images was created to verify the feasibility of MRI-based RTP. The dose distributions from the MRI-based calculations were compared to the original CT-based calculation. One MRI set has ED information from LUT (lMRI). Another set was generated with voxel values assigned with a homogeneous density of water (wMRI). A simple plan with a single anterior 6MV one portal was applied to the CT, lMRI, and wMRI. Depending on the patient's target geometry for the 3D conformal plan, 6MV photon beams and from two to five gantry portals were used. The differences of the dose distribution and DVH between the lMRI based and CT-based plan were smaller than the wMRI-based plan. The dose difference of wMRI vs. lMRI was measured as 91 cGy vs. 57 cGy at maximum dose, 74 cGt vs. 42 cGy at mean dose, and 94 cGy vs. 53 at minimum dose. The differences of maximum dose, minimum dose, and mean dose of the wMRI-based plan were lower than the lMRI-based plan, because the air cavity was not calculated in the wMRI-based plan. These results prove the feasibility of the lMRI-based planning for brain tumor radiation therapy.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Evaluation of the Usefulness for VMAT of multiple brain metastasis using jaw tracking (Jaw tracking을 이용한 다발성 뇌 전이의 용적세기조절회전치료에 대한 유용성 평가)

  • Kim, Tae Won;Yoo, Soon Mi;Jeon, Soo Dong;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.73-81
    • /
    • 2018
  • Purpose : The aims of this study were to compare and assess the effectiveness of Volumetric Modulated Arc Therapy(VMAT) using jaw tracking(JT) and fixed jaw(FJ) in radiation therapy of multiple brain metastasis. Methode and material : Among the patients with Multiple Brain Metastasis treated with jaw tracking, 10 patients with more than 6 tumors and with the size of radiation field $14{\times}14cm^2$ or more were included. Each Treatment plans with jaw tracking(JT) and fixed jaw(FJ) was established with Eclipse (Ver. 13.6 Varian, USA). Gamma Index (3 mm, 3 % confidence interval - 95 %) and maximum dose difference were measured with an electronic portal imaging device(EPID). The $D_{max}$ and $D_{mean}$ of Organ At Risk(OAR) were assessed and compared, and the Conformity Index(CI) and Homogeneity Index(HI) were evaluated. Result : Evaluating jaw tracking(JT) and fixed jaw(FJ) outcomes, in all cases, Gamma Index met the permissible standard of 3 mm, 3 % confidence intervals of 95 %. The maximum dose difference value from the areas with leaf end transmission was measured at a maximum of 98.4 % and an average of 43.6 % in clockwise(CW), and 67.9 % and 41.0 % for each in Counter-Clockwise(CCW). With jaw tracking, the maximum value of $D_{max}$ for each normal organ in OAR decreased in 15.36 %~74.59 % with the average value decreasing in 2.84 %~39.80 %. The maximum value of $D_{mean}$ in OAR decreased in 27.90 %~65.23 %, with the average value decreasing in 7.70 %~41.71 %. No change has been found in Conformity Index and Homogeneity Index values. Conclusion : When Jaw tracking is used in treating patients with multiple brain metastasis with VMAT, the unnecessary exposure due to leakage and transmission of radiation in unspecified areas was reduced, without affecting the dose distribution of the planning target volume(PTV), and the availability of radiation therapy with lower doses in normal organs is expected.

  • PDF

Effectiveness Assessment on Jaw-Tracking in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Esophageal Cancer (식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가)

  • Oh, Hyeon Taek;Yoo, Soon Mi;Jeon, Soo Dong;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.