• Title/Summary/Keyword: 전자제어식 분사펌프

Search Result 9, Processing Time 0.018 seconds

EFI Small Engine Development (전자연료 분사방식의 소형엔진 개발)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1000-1003
    • /
    • 2010
  • 기존 Non-Road 가솔린 불꽃점화 소형엔진의 경우 대부분이 캬브레이터 연료 공급 방식으로 연비 및 배기가스 성분이 매우 열악한 실정이다. 본 연구에서는 이러한 단점을 극복하고 배기규제에 대응하기위하여 전자제어식 연료분사방식으로 엔진을 변경하고, 관련핵심 부품의 설계 및 개발을 수행하였다. 전자제어식 소형엔진에 적합한 인젝터, 연료펌프를 선정하였으며 연료레일은 새로이 설계하여 장착하였다. 최적의 인젝터, 연료펌프 및 흡기포트를 선정하기위해 각각의 핵심 부품에 대한 성능개발을 수행하였다. 제작된 소형엔진은 엔진성능 개발을 통하여 연비 및 배기가스를 개발할 예정이다.

  • PDF

Development of the Small Size Engine for General Purpose (범용 소형엔진의 성능개발)

  • Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.839-841
    • /
    • 2010
  • 기존의 범용 가솔린 소형엔진의 경우 대부분이 캬브레이터 연료 공급 방식으로 연비 및 배기가스성분이 매우 열악한 실정이다. 본 연구에서는 이러한 단점을 극복하고 배기규제에 대응하기위하여 전자제어식 연료분사방식으로 엔진을 변경하고, 관련핵심 부품의 개발을 수행하였다. 전자제어식 소형엔진에 적합한 인젝터, 연료펌프를 선정하였으며 연료레일은 새로이 설계하여 장착하였다. 최적의 작동조건을 선정하기위하여 엔진의 성능개발을 수행하였다. 개발된 소형엔진은 기존의 캬브레이터 방식의 엔진 대비 우수한 연비개선 효과와 배기가스 저감 효과가 있었다.

  • PDF

A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector (전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구)

  • 정재우;김성중;이기형;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine (직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구)

  • ;;;;Ale
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Chon, Mun Soo;Park, Jung-Kwon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission (연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Chang-Boke;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.