Classification of moving targets in Pulse Doppler Radar(PDR) for surveillance and reconnaissance purposes is generally carried out based on listening and training experience of Doppler audio signals by radar operator. In this paper, we proposed the automatic classification method to identify the class of moving target with Doppler audio signals using the Mel Frequency Cepstral Coefficients(MFCC) and the Hidden Markov Model(HMM) algorithm which are widely used in speech recognition and the classification performance was analyzed and verified by simulations.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.3
/
pp.91-98
/
2016
Detection and classification of underwater objects in sonar imagery are challenging problems. This paper proposes a system that detects and identifies underwater objects at the sea floor level using a sonar image and image processing techniques. The identification process of underwater objects consists of two steps; detection of candidate regions and identification of underwater objects. The candidate regions of underwater objects are extracted by image registration through the detection of common feature points between the reference background image and the current scanning image. And then, underwater objects are identified as the closest pattern within the database using eigenvectors and eigenvalues as features. The proposed system is expected to be used in efficient securement of Q route in vessel navigation.
Snoring is a typical symptom of sleep disorder and it is important to identify the occurrence of snoring because it causes sleep apnea. In this paper, we proposes a residual convolutional neural network as an efficient snoring identification algorithm. Residual convolutional neural network, which is a structure combining residual learning and convolutional neural network, effectively extracts features existing in data more than conventional neural network and improves the accuracy of snoring identification. Experimental results show that the performance of the proposed snoring algorithm is superior to that of the conventional methods.
The Counter-battery radar estimates the origin and impact point of the artillery by tracking the trajectory of the shell. In addition, it has the ability of identifying the type of weapon. Depending on the position between the shell and the radar, the detected signals appear differently. This has ambiguity to distinguish the type of shells. This paper compares fuzzy logic and artificial intelligence, which classifies type of shell using the parameter of signal processing step. According to the research result, artificial intelligence can improve identification rate of type of shell. The data used in the experiment was obtained from a live fire detection test.
Identifying and searching for characters appearing in scenes during multimedia video editing is an arduous and time-consuming process. Applying artificial intelligence to labor-intensive media editing tasks can greatly reduce media production time, improving the creative process efficiency. In this paper, a method is proposed which combines existing artificial intelligence based techniques to automate character recognition and search tasks for video editing. Object detection, face detection, and pose estimation are used for character localization and face recognition and color space analysis are used to extract unique representation information.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2012.06a
/
pp.496-498
/
2012
선박이 운항중 타선과의 충돌상황을 효과적으로 신속하게 파악하는 데 도움을 줌으로써 선박 충돌사고를 방지하기 위한 선박충돌위험도 식별시스템을 개발하였다. 지난 연구에서는, 고안된 시스템의 성능을 검증하기 위해 부산항에서 일어난 제품운반선과 화물선간의 충돌사고의 실제 AIS 데이터를 이용한 재생시뮬레이션을 수행한 바 있다. 본 논문에서는 선박충돌위험도 식별 시스템의 테스트베드를 구축하였고, 실제 해상에서 AIS 신호를 이용하여 성능을 검증해 보고자 하였다. 이를 위해, 군산항과 인천항의 연안여객선에 테스트베드를 장착하고, 실제 운항중 AIS 정보를 이용하여, 실시간으로 선박충돌위험도 식별시스템의 온보드 시험을 수행하였다. 본 논문에서는 선박충돌위험도 식별 시스템의 테스트베드의 특징과, 실제 해상에서 수행된 온보드 시험 결과에 대해 소개하였다.
The field of recycling for waste electronic components, which is the typical example of an urban mine, requires the development of useful sorting techniques. In this study, a sorter based on image identification by deep learning was developed to select electronic components into four groups. They were recovered from waste printed circuit boards and should be separated to depend on the difference after treatment. The sorter consists of a workstation with GPU, camera, belt conveyor, air compressor. A small piece (less than 3.5 cm) of electronic components on the belt conveyor (belt speed: 6 cm/s) was taken and learned as teaching data. The accuracy of the image identification was 96% as kinds and 99% as groups. The optimum condition of sorting was determined by evaluating accuracies of image identification and recovery rates by blowdown when changing the operating condition such as belt speed and blowdown time of compressed air. Under the optimum condition, the accuracy of image classification in groups was 98.7%. The sorting rate was more than 70%.
To identify fraud clicks in the Internet advertisement, existing studies have considered keyword, visit time, and client IP as an independent variable for the standard. These methods have limitations in identifying the fraud clicks that utilize automation tools, for they are methods based on client IP and human activities on the Internet. This paper proposes that fingerprinting values of the variable combination should be used to identify fraud clicks. The proposed model is composed of 3 stages and the fingerprinting values are compared with the other input data at each stage; IP fingerprinting in the first stage, IP and session data fingerprinting in the second stage, and session data and keyword fingerprinting in the third stage. We showed that the proposed model of the fraud click identification is more correct than existing methods through experiments according to the proposed scheme.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.3
no.1
/
pp.38-46
/
2010
This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNs). With GRNNs, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10% improvement in classification error. The angular gaze accuracy is about $5^{\circ}$horizontally and $8^{\circ}$vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.9
/
pp.82-88
/
2016
The proposed new UCI syntax is compatible with the existing identifier and defines fixed length in such cases as printable ID, bar code and QR code which may entail better usage of identifier itself. For the compatibility, the identifiable metadata "key" is used for the existing UCI identifier and "UCI" element of metadata is defined for the new UCI identifier. The new UCI identifier plays roles of the resolution service and representation, and the old UCI identifier plays a role of internal DB management. Also, the object code has two types, meaningless and meaningful. The meaningful object code type can be used according the content classification standards in various field as comics, games, advertisement etc. The standardization activities can be supported by the root agency of UCI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.