• Title/Summary/Keyword: 전자선량분포

Search Result 120, Processing Time 0.04 seconds

Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료의 다양한 EPID 영상 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Cho, Jeong-Hee;Lee, Jea-Hee;Jung, Jae-Yong;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.451-461
    • /
    • 2015
  • In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) ${\times}$ 10 (length) ${\times}$ 1 (width) $cm^3$ and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeam$^{TM}$ (Varian), BEAMVIEW$^{PLUS}$ (Siemens), iViewGT (Elekta) and Clinac$^{(R)}$iX (Varian) were used. As for MTF results, TrueBeam$^{TM}$(Varian) flattening filter free(FFF) showed the highest values of $0.46mm^{-1}$ and $1.40mm^{-1}$ for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and $1mm^{-1}DQE$ of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID).

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

Design and Application of Acrylic Electron Wedge for Improving Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 acrylic electron wedge의 제작 및 사용)

  • Kim, Young-Bum;Kwon, Young-Ho;Whang, Woong-Ku;Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.36-42
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20%$) at the region of junction of fields. In this study, we made Acrylic Electron Wedges to improve dose inhomogeneities(${\pm}5%$) in these junction areas and to apply it to clinical practices. All measurements were made using 6, 9, 12, 16, 20 MeV Electron beams from a linear accelerator for a $10{\times}10\;cm$ field at 100cm of SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm acquires central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance according to the acryl insert, e.g. a 1 mm thick acryl insert reduces the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced to approximately 0.2 MeV. These effects were almost Independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase(less than 3%) in the surface dose and a small increase(less than 1%) in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction at the point of penumbra width($35\;mm{\sim}40\;mm$). We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be used to improve dose uniformity at electron field junctions and it will be effectively applied to clinical practices.

  • PDF

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Development of $^{166}Ho$-Stent for the Treatment of Esophageal Cancer (식도암 치료용 $^{166}Ho$-Stent 개발)

  • Park, Kyung-Bae;Kim, Young-Mi;Kim, Kyung-Hwa;Shin, Byung-Chul;Park, Woong-Woo;Han, Kwang-Hee;Chung, Young-Ju;Choi, Sang-Mu;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • Purpose: Esophageal cancer patients have a difficulty in the intake of meals through the blocked esophageal lumen, which is caused by an ingrowth of cancer cells and largely influences on the prognosis. It is reported that esophageal cancer has a very low survival rate due to the lack of nourishment and immunity as the result of this. In this study a new radioactive stent, which prevents tumor ingrowth and restenosis by additional radiation treatment, has been developed. Materials and Methods: Using ${\ulcorner}HANARO{\lrcorner}$ research reactor, the radioactive stent assembly ($^{166}Ho$-SA) was prepared by covering the metallic stent with a radioactive sleeve by means of a post-irradiation and pre-irradiation methods. Results: Scanning electron microscopy and autoradiography exhibited that the distribution of $^{165/166}Ho\;(NO_3)$ compounds in polyurethane matrix was homogeneous. A geometrical model of the esophagus considering its structural properties, was developed for the computer simulation of energy deposition to the esophageal wall. The dose distributions of $^{166}Ho$-stent were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly on the surface in the form of a cylinder with a diameter of 20 mm and length of 40 mm. As an animal experiment, when radioactive stent developed in this study was inserted into the esophagus of a Mongrel dog, tissue destruction and widening of the esophageal lumen were observed. Conclusion: We have developed a new radioactive stent comprising of a radioactive tubular sleeve covering the metallic stent, which emits homogeneous radiation. If it is inserted into the blocked or narrowed lumen, it can lead to local destruction of the tumor due to irradiation effect with dilatation resulting from self-expansion of the metallic property. Accordingly, it is expected that restenosis esophageal lumen by the continuous ingrowth and infiltration of cancer after insertion of our radioactive stent will be decreased remarkably.

  • PDF

Radiation Therapy in Elderly Skin Cancer (노령의 피부암에서 방사선치료)

  • Kim, Jin-Hee
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Purpose: To evaluate the long term results(local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. Material and Methods: The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma(10 patients), basal cell carcinoma(3 patients), verrucous carcinoma(1 patient) and skin adnexal origin carcinoma(1 patient). The most common tumor location was the head(13 patients). The mean tumor diameter was 4.9 cm(range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from $50{\sim}80$ Gy(mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. Results: The local control rates were 100%(15/15). In addition, the five year disease free survival rate(5YDFS) was 80% and twelve patients(80%) had no recurrence and skin cancer recurrence occurred in 3 patients(20%). Three patients have lived an average of 90 months($68{\sim}120$ months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. Conclusion: The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin cancer in elderly patients who achieved a good survival rate and few minor complications.

Radiation Therapy for Carcinoma of the Oropharynx (구인두암의 방사선치료)

  • Park, In-Kyu;Kim, Jae-Choel
    • Radiation Oncology Journal
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 1996
  • Purpose : A retrospective analysis for patients with oropharyngeal carcinoma who were treated with radiation was performed to assess the results of treatment and patterns of failure, and to identify the factors that might influence survival. materials and methods : From March 1985 through June 1993, 53 patients with oropharyngeal carcinoma were treated with either radiation therapy alone or combination of neoadjuvant chemotherapy and radiation therapy at the Department of Radiation Oncology, Kyungpook National University Hospital. Patients' ages ranged from 31 to 73 years with a median age of 54 years. There were 47 men and 6 women, Forty-two Patients ($79.2\%$) had squamous cell carcinoma, 10 patients ($18.9\%$) had undifferentiated carcinoma and 1 patient ($19\%$) had adenoid cystic carcinoma. There were 2 patients with stage I, 12 patients with stage II, 12 Patients with stage III and 27 patients with stage IV. According to the TNM classification, patients were distributed as follows: T1 7, T2 28, T3 10, T4 7, TX 1, and N0 17, Nl 13, N2 21, N3 2. The primary tumor sites were tonsillar region in 36 patients ($67.9\%$), base of the tongue in 12 patients ($22.6\%$), and soft palate in 5 patients ($9.4\%$). Twenty-five patients were treated with radiation therapy alone and twenty-eight Patients were treated with one to three courses of chemotherapy followed by radiation therapy. Chemotherapeutic regimens used were either CF (cisplatin and 5-fluorouracil) or CVB (cisplatin, vincristine and bleomycin). Radiation therapy was delivered 180-200 cGy daily, five times a week using 6 MV X-ray with or without 8-10 MeV electron beams A tumor dose ranged from 4500 cGy to 7740 cGy with a median dose of 7100 cGy. The follow-up time ranged from 4 months to 99 months with a median of 21 months. Results : Thirty-seven patients ($69.8\%$) achieved a CR (complete response) and PR (partial response) in 16 patients ($30.2\%$) after radiation therapy. The overall survival rates were $47\%$ at 2 years and $42\%$ at 3 years, respectively. The median survival time was 23 months. Overall stage (p=0.02) and response to radiation therapy (p=0.004) were significant prognostic factors for overall survival. The 2-year disease-free survival rate was $45.5\%$. T-stage (p=0.03), N-stage (p=0.04) and overall stage (P=0.04) were significant prognostic factors for disease-free survival. Age, sex, histology, primary site of the tumor, radiation dose, combination of chemotherapy were not significantly associated with disease-free survival. Among evaluable 32 Patients with CR to radiation therapy, 12 patients were considered to have failed Among these, 8 patients failed locoregionally and 4 Patients failed distantly. Conclusion : T-stage, N-stage and overall stage were significant prognostic factors for disease-free survival in the treatment of oropharyngeal cancer Since locoregional failure was the predominant pattern of relapse, potential methods to improve locoregional control with radiation therapy should be attempted. More controlled clinical, trials should be completed before acceptance of chemotherapy as a part of treatment of oropharyngeal carcinoma.

  • PDF

Effects of Postoperative Radiation Therapy for Prevention of Keloids and Hypertrophic Scars (켈로이드와 비후성 반혼에서 재발을 방지하기 위한 수술후 방사선치료의 효과)

  • Kang, Ki-Mun;Choi, Ihl-Bohng;Kim, In-Ah;Jang, Jee-Young;Shinn, Kyung-Sub
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.269-276
    • /
    • 1997
  • Purpose : To evaluate the effects of surgical excision followed by radiation therapy for Prevention of keloids and hypertrophic scars. Materials and Methods : From October 1987 to April 1995, radiation therapy was applied to 167 sites in 106 patients with surgical excision in an attempt to prevention of recurrence against keloids and hypertrophic scars. The main etiology of the keloids and hypertrophic scars were surgery in $49.2\%,\;trauma\;in\;25.0\%,\;ear-piercing\;in\;5.4\%,\;and\;burn\;in\;5.4\%$, The Patients' ages ranged from 3 to 70 years with a median of 32 years. Radiation therapy used ranged from 6 to 8MeV electron beam. Radiation therapy was delivered within 24 hours of surgical excision. Several dose schedules were used, varing from 400cGy in 1 daily fraction to 1900cGy in 4 daily fractions. The average total dose was 1059cGy, and the average dose per fraction was 433cGy. All patients were followed up from 24 to 114 months with a median follow up of 49 months. Results : The overall recurrence rate was $12.6\%$ (21/167) The overall 1-year and 2-year recurrence rates were $10.2\%\;and\;11.4\%$, respectively Among 21 recurrent sites, seventeen sites $(81\%)$ were confirmed within 12 months after surgical excision. Period to recurrence ranged from 1 month to 47 months with a median recurrence time of 9.6 months, The history of previous therapy was only a significant factor in recurrence. Twenty-four patients had history of previous therapy recurrence rates was significantly higher in this group than those without history of Previous therapy $(22.6\%\;vs.\;11.0\%,\;p=0.04)$. There was no serious complication related to radiation therapy. Conclusion : This study suggests that surgical excision followed by radiation therapy is an effective method of preventing keloids and hypertrophic scars.

  • PDF

Change of FDG Uptake According to Radiation Dose on Squamous Cell Carcinoma of the Head and Neck (두경부종양에서 방사선조사량에 타른 FDG-PET의 변화양상)

  • Lee Sang-wook;Kim Jae-Seung;Im Ki Chun;Ryu Jin Sook;Lee Hee Kwan;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Yoon Sang Min;Song Siyeol;Park Jin-hong;Moon Dae Hyuk;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.98-105
    • /
    • 2004
  • Purpose : To evaluate whether positron omission tomography (PET) with 2-[F-18]fluoro-2-deoxy-D-giucose(FDG) can be used to predict of early response to definitive aim radlotherapy (RT) in squamous cell carcinoma of the head and neck using response rate and locoreglonal control as study endpoints. Materials and Methods : Twenty-two patients with head and neck cancer underwent a FDG-PET study before RT, after a flrst dose of 45 Gy, and after a second dose on more 4han 70 Gy. Standard uptake value (SUV) was calculated for primary tumor (n=22) and neck lymph node (n:10). Attenuation corrected PET scans acquired 60 min after tracer injection were used for evaluation of FDG uptake In tumors. A quantitative FDG uptake index was expressed as Suvlean (corrected for iean body mass). The follow-up time was at least 5 months (range S-1 S months). Results : A total of 22 primary tumors and 10 metastatic lymph nodes were analyzed In FDG-PET. In the first PET study the mean SUVlean the primary tumors and nodes were 5.4 (SD, 2.5) and 4.6 (SD, 2.3), respectively. In the second PET, study peformed after 46 Gy RT the mean SUV in primary tumor and node decreased to 2.9 (SD, 1.9, p<0.001) and 1.7 (SD, 1.3) respectively. in the third PET study peformed at the full dose (more than 70 Gy), RT the mean SUV In the primary tumors and nodes decreased to 2.3 (SD, 1.5, p<0.001) and 1.5 (SD, 1 .1) respectively. Conclusions: FDG uptake In tumors showed a significant decrease after the 45 Gy and more than 70 Gy of RT for squamous cell carcinoma of the head and neck. Reduction of metabolic activity after 46 Gy of radiotherapy Is closely correlated with radiation response.