• Title/Summary/Keyword: 전자석 액츄에이터

Search Result 3, Processing Time 0.017 seconds

Vibration control of the vibration isolation system using the electromagnetic actuator (전자석 액츄에이터에 의한 수동방진 테이블의 제어)

  • Choi, Hyun;Lee, Jung-Youn
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

Design and Analysis of an Inchworm Actuator with Electromagnetic Switching (자속경로 스위칭에 의한 인치웜 액츄에이터의 설계 및 해석)

  • Jung, Jae-Sung;Min, Hyun-Jin;Kim, Sang-Chae;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.843-848
    • /
    • 2000
  • In general, inchworm actuators are composed of two clamping piezoelectric elements and one expansion piezoelectric element. In this paper, two electromagnetic clampers are used for higher speed and high load. Dynamic equation is derived to simulate the behavior of the inchworm actuator with electromagnets. Electromagnetic clamper is used to improve the performance of the inchworm actuator. The electromagnetic clamper is composed of two permanent magnets and one traditional electromagnet. The permanent magnets play the role of the source of magnetic field to make clamping force higher, and the electromagnet is to change the mode between clamping and free. The driving voltage profile is also analyzed to improve the speed of inchworm actuator. The real system was manufactured and experimented to find dynamic characteristics and the maximum speed is obtained. Dynamic model is verified by comparing with experimental results.

  • PDF

A Linear Motor Using a Magnetostrictive Actuator (자기변형 엑츄에이터를 이용한 선형모터)

  • Park Y.W.;Seok Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1841-1844
    • /
    • 2005
  • A linear motor makes a long stroke by accumulating short steps, which is based on the quasistatic deformation of a magnetostrictive material in a magnetic field. It's also called as inchworm effect. The application areas of linear motors are an adaptive and active optics, X-Y positioning, precision alignment, etc. It is found that control of the frequency and current inputs are all that is necessary to control the speed handling ability of the linear motor. In inchworm mode, linear speeds of up to $500{\mu}m/s$ are achieved resulting from the accumulation of $25{\mu}m$ steps at 1.4A.

  • PDF