• 제목/요약/키워드: 전위펀칭

검색결과 4건 처리시간 0.016초

입자 강화 금속기지 복합재의 연속체 강도해석을 위한 전위 펀칭 이론의 전산적 평가 (Numerical Assessment of Dislocation-Punching Theories for Continuum Structural Analysis of Particle-Reinforced Metal Matrix Composites)

  • 서영성;김용배
    • 대한기계학회논문집A
    • /
    • 제35권3호
    • /
    • pp.273-279
    • /
    • 2011
  • 입자 강화 복합재료는 입자의 크기가 감소할수록 그 항복강도가 증가하므로, 입자의 크기에 대한 길이 스케일을 보인다. 항복강도에 대한 이러한 길이 스케일은 복합재가 압밀된 후 냉각될 때 기지재와 입자간 열팽창계수의 상이함에 의하여 입자 주위 기지재에 펀칭되는 기하적 필수 전위가 주된 영향을 미치는 것으로 알려져 있다. 본 연구에서는 입자 강화 복합재의 연속체 강도해석 모델링에 사용할 수 있는 두 가지 전위 펀칭이론들에 대하여 전산적으로 검토하였다. 즉, 입자 주위에 펀치되는 전위 영역의 크기를 계산하는 대표적인 두 가지 이론들인 Shibata 등 및 Dunand and Mortensen 이론으로부터 전위 펀치 영역의 크기를 계산하고, 이를 유한요소해석에 적용하여 복합재의 항복 강도를 예측하였으며 실험값과 정성적으로 비교하였다. 본 연구에서 입자가 매우 작은 경우, 즉, 입자의 크기가 2.m이하인 경우에 두 이론 간에 극명한 차이를 보여주었으며, Shibata 등의 정식이 정성적으로 실험값에 더 근사한 것을 확인하였다.

변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링 (Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity)

  • 서영성;박문식;송승
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.745-751
    • /
    • 2011
  • 입자강화 알루미늄 복합재의 강도를 계산하기 위하여 압밀 후 냉각할 때 일어나는 전위 펀칭을 유한요소로 모델링 하였다. 다양한 입자의 체적비에서 입자의 크기가 강도에 미치는 영향을 고려하기 위하여 강화 입자 주위에 변형률 구배 소성과 테일러 전위 모델을 적용하였다. 변형률 구배는, 구형 단위 셀이 냉각하는 동안 입자와 기지재의 열팽창계수 차이에 의한 전위 펀칭이 일어날 때 형성되는 등가소성변형률로부터 구하였다. 펀칭된 영역에 걸쳐 평균적으로 변형률 구배를 고려함으로써 항복 응력이 증가하는 것을 관찰하였다. 유한요소 해석을 활용하여 다양한 입자 크기와 체적비에 대하여 SiC 강화 알루미늄 356-T6 복합재의 축대칭 단위 셀의 인장시 강도의 변화를 예측하였다. 예측된 강도는 실험 데이터와 잘 일치하며, 입자 크기 의존 효과를 분명히 보인다.

전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링 (Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure)

  • 서영성;김용배
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.187-194
    • /
    • 2012
  • 일반적으로 복합재의 강도에 대한 크기 효과는 입자강화 알루미늄 복합재 제조시, 입자와 기지재를 압밀한 후 냉각할 때 입자와 기지재 사이의 열팽창계수 차에 의하여 기지재에 펀칭되는 기하적 필수 전위와, 변형 중 입자와 기지재사이의 탄소성 강성도 차로 인해 발생하는 변형률 구배 소성으로 인한 기하적 필수 전위가 주로 영향을 미치는 것으로 알려져 있다. 본 논문에서는 이러한 두 종류의 기하적 필수 전위를 전위 소성 이론에 입각하여 강도로 환산한 후 계층적으로 입자 주위 유한요소 영역에 할당하여 동일한 체적비에서 입자의 크기에 따라 변화하는 복합재의 파손 거동을 효과적으로 예측하였다. 이 방법을 적용함으로써 구형입자의 경우 간단한 축대칭 유한요소 모델링과 실험데이터를 연계하여 입자강화 복합재의 입자 크기 의존 강도 및 파손 효과를 수월하게 예측할 수 있음을 보였다. 또한 서로 다른 입자의 체적비 및 크기에 대하여SiC강화 알루미늄 2124-T4 복합재의 강도와 파손 거동이 분명한 차이가 있음을 보인다.

전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석 (Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling)

  • 서영성
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.275-282
    • /
    • 2014
  • 입자강화 금속기지 복합재는 입자와 기지재간의 열팽창계수 차이와 탄소성 강성도의 차이에 따라 변형률 구배가 발생하고 이로 인한 기하적 필수 전위가 입자 주위에 형성됨에 따라 변형시 입자 크기 의존 길이 스케일에 의한 강화 효과를 가지고 있다. 본 연구에서는 유한요소법을 활용하여 복합재를 압밀 성형할 때 입자 주위에 펀칭되는 기하적 필수 전위에 의한 강도 증가를 입자 주위 영역에 부가시켜 입자 의존 길이 스케일이 복합재의 입자 경계 파손 및 기지재의 연성 파손에 미치는 영향을 살펴 보았다. 파손 거동은 입자의 크기와 체적비를 달리하고, 특히 분리 에너지와 강도 등의 경계 파손 물성값을 변화시켜가는 매개변수적 계산을 수행하여 관찰하였다. 두 개의 파손 모드는 서로 영향을 미치면서 입자 크기 의존 길이 스케일에 밀접하게 연관됨을 보였다. 즉 입자의 크기가 작은 경우에 입자의 크기가 큰 경우에 비하여 입자를 둘러싸고 있는 기하적 필수 전위가 상대적으로 더 집적됨으로 인해 입자경계와 기지재의 연성 파손에 의한 복합재의 파손 개시가 지연되고 파손이 진행되는 동안의 유동 응력 감소도 상대적으로 작은 것을 보였다.