• Title/Summary/Keyword: 전압변성기

Search Result 35, Processing Time 0.023 seconds

A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method (Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성)

  • Joung, Jong-Han;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

Compensation algorithm of a voltage transformer considering hysteresis characteristics (히스테리시스 특성을 고려한 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Park, Jong-Min;Jang, Sung-Il;Kim, Yong-Guen
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.12-14
    • /
    • 2007
  • A voltage transformer (VT) is used to transform a high voltage into a low voltage as an input for a metering device or a protection relay. VTs use an iron core which maximizes the flux linkage. The primary current of the VT has non-fundamental components caused by the hysteresis characteristics of the iron core. It causes a voltage drop in the winding impedances resulting in the error of the VT. This paper describes a compensation algorithm for the VT. The proposed algorithm can compensate the secondary voltage of VT by calculating the primary current from the exciting current of the hysteresis loop in the voltage transformer. In this paper, the exciting branch was divided into a non-linear core loss resistor and a non-linear magnetizing inductor. The performance of the proposed algorithm was validated under various conditions using EMTP generated data. Test results show that the proposed compensation algorithm can improve the accuracy of the VT significantly.

  • PDF

Compensation Algorithm for a Measurement Voltage Transformer (측정용 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Park, Jang-Min;Lee, Mi-Sun;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Electrical characteristics for Multi-Nanocomposites throuh Surface Control of Epoxy/Nano_Micro $SiO_2$ Particles (Epoxy/Nano_Micro $SiO_2$입자 표면제어를 통한 멀티-나노콤포지트 전기적 특성연구)

  • Park, Young-Byum;Park, Hyun-Su;O, Chung-Yon;Kim, Hak-Jae;Park, Ki-Ryung;Lee, Dae-Kyoung;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.154-154
    • /
    • 2009
  • 본 연구는 고전압 전력기기인 몰드형변압기와 계기용 변성기인 CT, PT 절연특성에 유용한 Epoxy/Nano-Micro Mixture Composites(이하,ENMMC)를 개발하기위해 무엇보다 중요한 것은 Nano입자인 $SiO_2$_10nm입자의 표면을 제어하여 즉, 표면의 소수성을 크게 하여 나노입자의 균질한 분산을 얻은것이 무엇보다 중요하다. 개발된 Epoxy/$SiO_2$_10nm Nanocomposites와 Microcomposites을 기계적 전단응력을 이용하여 균질 혼합을 실시하였다. 이런 조건을 이용한 전기적특성을 측정하기위해 구대구 전극이 완전함침된 평등전계하에서 절연파괴전압을 측정하기 시편을 제조하였다. 마이크로입자의 충진함량을 일정하게 유지하여 나노입자 충진함량비율을 4가지로 변화시켜 절연파괴특성을 연구하였다. 충진함량이 나노입자의 경우 1wt%이하의 값이 상대적으로 우수한 절연파괴특성으로 와이블 플롯을 통하여 알수있었다. 상대적으로 멀티나노콤포지트의 형상파라미터가 큰 결과값을 얻을수 있었다. 그리고 스케일파리미터는 누적확률 밀도함수로서 63.2%에서 대단히 큰 초절연성의 절연소재를 개발할수 있었다.

  • PDF

결정질 실리콘 태양전지 표면 조직화 형상이 효율에 미치는 영향 분석

  • Byeon, Seong-Gyun;Kim, Jun-Hui;Park, Ju-Eok;Jo, Hae-Seong;Kim, Min-Yeong;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.315.1-315.1
    • /
    • 2013
  • 표면 조직화의 목적은 태양전지 표면에서의 입사되는 빛의 반사율을 감소 시키고, 웨이퍼 내에서 빛의 통과 길이를 길게 하며, 흡수되는 빛의 양을 증가시키는 것이다. 본 연구에는 습식, 건식 표면조직화 방법에 따른 표면 형상과 표면 반사도를 분석 하였으며, 셀을 제작하여 전기적 특성과 광학적 특성의 상관관계를 분석하였다. 표면 조직화 공정은 염기성 용액인 KOH를 이용한 식각 방법과 Ag를 이용한 metal-assisted 식각, 산증기를 이용한 식각, 플라즈마를 이용한 반응성 이온식각을 적용하여 제작하였다. 표면 반사율을 400~1000 nm 사이의 파장에서 측정하였으며 KOH를 이용하여 식각한 샘플이 9.11%의 표면 반사율을 가졌으며 KOH를 이용하여 식각한 표면에 추가로 metal-assisted 식각을 한 샘플이 2%로 가장 낮은 표면 반사율을 보였다. 표면 조직화 후 동일 조건으로 셀을 제작 하여 효율 측정 결과 Ag를 이용한 2단계 metal-assisted chemical 식각이 15.83%의 가장 낮은 광변환 효율을 보였으며 RIE를 이용한 2단계 반응성 이온 식각공정이 17.78%로 가장 높은 광변환 효율을 보였다. 이 결과는 반사도 결과와 일치 하지 않았다. 표면 조직화 모양에 따른 셀 효율의 변화는 도핑 프로파일과 표면 재결합 속도의 변화 때문이라 생각되며 더 명확한 분석을 위해 양자 효율을 측정하여 분석을 시도하였다. 측정 결과 단파장 대역에서 낮은 응답특성을 가지는 것을 확인 할 수 있었는데 그 이유는 낮은 반사도를 가지는 표면조직화 공정의 경우 나노사이즈의 구조를 갖기 때문에 균일한 도핑 프로파일을 얻지 못해 전자 정공의 분리가 제대로 이루어지지 못하였고 표면 재결합 속도증가의 원인으로 단락전류와 개방전압이 낮아져 효율이 떨어진 것으로 판단된다. 실험 결과 도핑 프로파일의 균일성은 셀 효율 개선을 위해 낮은 표면 반사율 만큼 중요하다는 점을 알게되었다. 낮은 반사율을 갖는 표면조직화 공정도 중요하지만 표면에 따른 균일한 도핑 프로파일을 갖는 공정을 개발한다면 단파장 응답도가 향상되어 단락전류밀도의 상승효과를 얻을 수 있을 것이라 판단된다.

  • PDF