• Title/Summary/Keyword: 전송성능

Search Result 7,293, Processing Time 0.029 seconds

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.

(A Scalable Multipoint-to-Multipoint Routing Protocol in Ad-Hoc Networks) (애드-혹 네트워크에서의 확장성 있는 다중점 대 다중점 라우팅 프로토콜)

  • 강현정;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.329-342
    • /
    • 2003
  • Most of the existing multicast routing protocols for ad-hoc networks do not take into account the efficiency of the protocol for the cases when there are large number of sources in the multicast group, resulting in either large overhead or poor data delivery ratio when the number of sources is large. In this paper, we propose a multicast routing protocol for ad-hoc networks, which particularly considers the scalability of the protocol in terms of the number of sources in the multicast groups. The proposed protocol designates a set of sources as the core sources. Each core source is a root of each tree that reaches all the destinations of the multicast group. The union of these trees constitutes the data delivery mesh, and each of the non-core sources finds the nearest core source in order to delegate its data delivery. For the efficient operation of the proposed protocol, it is important to have an appropriate number of core sources. Having too many of the core sources incurs excessive control and data packet overhead, whereas having too little of them results in a vulnerable and overloaded data delivery mesh. The data delivery mesh is optimally reconfigured through the periodic control message flooding from the core sources, whereas the connectivity of the mesh is maintained by a persistent local mesh recovery mechanism. The simulation results show that the proposed protocol achieves an efficient multicast communication with high data delivery ratio and low communication overhead compared with the other existing multicast routing protocols when there are multiple sources in the multicast group.

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure (포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계)

  • Tae-Hyeon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.252-264
    • /
    • 2023
  • This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.