• Title/Summary/Keyword: 전선해석

Search Result 104, Processing Time 0.028 seconds

Physical Environment Changes in the Keum River Estuary Due to Dike Gate Operation: III. Tidal Modulation of Low-salinity Water (하구언 수문 작동으로 인한 금강 하구역의 물리적 환경변화: III. 저염수의 조석동조)

  • Choi, Hyun-Yong;Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.115-125
    • /
    • 2001
  • To examine the movement of the freshwater discharged artificially into the estuary during ebbing period in the Keum River dike we observed surface salinity variations in three stations along the estuary channel in May 1998 and July 1997 and surface temperature and salinity along the ferry-route between Kunsan and Changhang during eighteen days in July 1999. Based upon the typical features of observed salinity variation, we analyzed the excursion and decay processes of the discharged water. When freshwater is discharged, the low-salinity water forms strong salinity front over the entire estuary width, which basically moves forth and back by tidal modulation along the channel, producing the sudden change of surface salinity with the front passage. Salinity distribution along the channel, which is deduced from time variation of mean salinity over the estuary width, after one tidal period from gate operation suggests that diluted low-salinity water is trapped to the front and surface salinity increases gradually toward the upstream region. This frontal distribution of salinity is interpreted to be produced by the sudden gate operation supplying and stopping of freshwater within about two hours. Daily repeat of freshwater discharge produces separation (double front) or merge between decaying and new-generated fronts depending on dike-gate opening time, and the front decays with salinity increasing if the freshwater supply is stopped more than two days. In addition, the observed fluctuations and deviations in surface salinity variation is explained in terms of the differences of fronts intensity, their transition time and temporal salinity front running along the channel, which can be generated due to artificial gate-operation for the discharging time and water volume in the estuary dike.

  • PDF

Numerical Analysis of the Seepage from and Stability of a Mine Waste-dump Slope during Rainfall (강우시 광산폐기물 적치사면의 침투 및 안정성에 대한 수치해석)

  • Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • A numerical analysis was performed of the seepage from and stability of a mine waste-dump slope in Imgi, Busan, considering rainfall intensity. The 40-45° slope angle of the waste dump is relatively steep, and the depth of the waste dump down to bedrock is 7-8 m. The groundwater level was 6.6 m below the surface. Various laboratory tests on samples obtained from the waste dump were performed to determine the input data for seepage and stability analyses of the waste-dump slope during rainfall. The results of seepage analysis for various rainfall intensities using the SEEP/W program show that the wetting front moved down with increasing rainfall duration. When the rainfall intensity was > 50 mm/ hour and the duration was > 24 hours, the waste dump became fully saturated because the wetting front reached the groundwater level. The results of slope stability analysis coupled with seepage analysis using the SLOPE/W program show that the safety factor of the slope decreased as the wetting front moved down due to rainfall infiltration. After continuous rainfall for 5-6 hours, the safety factor of the slope suddenly decreased but then recovered and converged. The sudden decrease was induced by an increase in pore-water pressure and a decrease in matric suction down to a certain depth as the wetting front approached the potential sliding surface.

The study of 181,000 DWT BULK CARRIER global vibration characteristic by global vibration analysis (181,000 DWT BULK CARRIER 전선 진동해석을 통한 전선진동특성 고찰)

  • Lim, Gu-Sub;Jeong, Tea-Seok;Choi, Youndal-Dal;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.329-330
    • /
    • 2008
  • The 181,000 DWT Bulk Carrier has a different deck house type, which is not typical for previous bulk carriers, to meet the new international rules for bulk carriers. This new deck house has much smaller transverse breadth than the hull's transverse breath, resulting in large levels of the transverse response of the deck house. In addition, the longitudinal response of the funnel showed rather a large magnitude of vibration, which are excited by the ship's main excitations such as the main engine H-moment and the propeller surface forte when the ship operates at the NCR and the MCR speeds In the ballast condition. To solve these issues, the global forced vibration analysis has been performed for the ship and the ship structure has been modified to reduce the vibration level by increasing the girder depth and adjusting the engine room tank arrangement.

  • PDF

A Study on the Effect of Topside and Interface on Hull in Whole Ship Analysis of Ship Type Offshore Structure (Ship Type 해양 구조물 전선 해석 시 Topside와 Interface가 Hull에 미치는 영향 연구)

  • Seo, Joon-Gyu;Kang, Ho-Yun;Park, Jung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.314-321
    • /
    • 2021
  • In the existing whole ship analysis, topside was modeled as mass element. However recently, the topside is modeled as beam element due to the owner's requirement to improve the maturity of the whole ship FE model. To follow the owner'srequirement, detailed information for topside drawing and modeling, which may delay analysis schedule, is needed. However, it is hard to respond effectively to this matter due to the lack of study on the topside from the hull perspective. Therefore in this study, the effect of the topside on the hull is investigated when the topside is modeled as a mass element or beam element respectively. In addition, the interface modeling method is analyzed to verify modeling method used in the existing whole ship analysis. The results indicate that the interface and topside modeling method used in existing whole ship analysis are appropriate. This conclusion will be the technical basis for responding to owner's requirement about the topside modeling method.

A Shallow Water Front and Water Quality in Chinhae Bay (진해만에 형성되는 천해전선과 수질분포)

  • Kum, Cha-Kyum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.86-96
    • /
    • 1997
  • In order to investigate the formation of a shallow water front and its relation to water quality distributions, oceanographic measurements were made, and the numerical computations of the Simpson-Hunter stratification parameter log(H/U$^3$) were performed. It is shown from satellite image and hydrographic data that the shallow water front is formed near the northern Kaduk channel, and the stratification parameter log(H/U$^3$) near the front is in a range of 2.0-2.5. Measured COD (Chemical Oxygen Demand) concentrations in offshore region of the front and in the western part of the bay are below 2.0 mg/1. whereas the concentrations in Masan Bay located in the northern inside of the frontal zone are high as 3.0-5.5 mg/1. COD concentrations decrease gradually from Masan Bay toward the offshore due to the dilution by strong water mixing. Anoxic and hypoxic water masses at the bottom layer in summcr occur in the western part of Chinhae Bay and in Masan Bay, and DO (Dissolved Oxygen) concentrations become low with increasing the stratification parameter. DO concentrations outside the front are more than about 4.0 mg/1, whereas the concentrations inside the front are low. The shallow water front plays a significant role for material transport from coastal area to oceanic area, and the frontal region seems to be important physical and chemical boundaries.

  • PDF

Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM (3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석)

  • Kim, Kyong-Hwan;Bang, Je-Sung;Kim, Yong-Hwan;Kim, Seung-Jo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

An Analysis of the I-t Characteristic of Low Voltage Distribution Line Fuse Using the FEM (유한 요소법을 이용한 저압 배전용 전선퓨즈의 I-t 특성 해석)

  • 황명환;박두기;이세현;한상옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.74-80
    • /
    • 1997
  • In this paper, we deal with the I -t characteristic of low voltage distribution fuse (line fuse). That fuse element has two parts;One is low temperature melting element(LTME) to put up with over current and the other is high temperature melting element (HTME) which put up with large current. Melting charateristic of fuse is determined by L TME and HTME. So we verified their properties of fuse design, mathematically, by simulating the thermal and electric characteristics of each other. We simulated the I-t characteristic of line fuse by using the numerical method;Finite Element Method(FEM). Then, we could acquire very similar result at the HTME and L TME area when compared the simlation result with experimental one.

  • PDF

A Combined Model of Deformation Characteristics and Seepage for a Slope (강우침투를 고려한 사면의 변형특성모델)

  • 신승목;김상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.247-252
    • /
    • 1994
  • 우리나라 산사태의 대부분은 사면의 깊이가 얕은 상태에서 발생하며, 지형적 지질적 및 강우조건에 따라 각기 다른 사면 파괴의 형태를 보여주고 있다. 본 논문에서는 IFDM의 기법을 이용하여 강우침투에 의해 발생할 수 있는 불포화지반으로의 침윤전선의 진행, 간극수압의 시간적 발생과정 등을 포함하는 침투해석을 수행하였다. 침투해석으로 얻은 강우침투 결과를 hyperbolic 응력, 변형을 모델에 조합하여 시간별로 응력, 변형해석을 할 수 있는 모델을 제안하였다. 이 모델에 의한 해석예로써 용인군 창리 산사태 지역을 선택하여 기존의 한계평형법과 본 논문에서 제안한 모델의 결과를 비교하였다.

  • PDF