• Title/Summary/Keyword: 전산 유체 해석

Search Result 2,589, Processing Time 0.029 seconds

The Study of 1-Way FSI for Strength Assessment of LNG Cargo Containment System (1-way FSI 기법에 의한 LNG 운반선 화물창의 강도평가에 관한 연구)

  • Lee, Sung-Je;Yang, Yong-Sik;Kim, Sung-Chan;Lee, Jang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.527-530
    • /
    • 2011
  • 전 세계적인 LNG 수요 증가에 따라 LNG 운반선의 대형화 및 극한 환경의 항로 선택이 불가피해지고 있다. 이러한 상황에서 LNG의 슬로싱 현상에 따른 화물창의 구조적 안정성 여부가 큰 이슈거리로 떠오르고 있다. 슬로싱 현상에 의한 구조 안전성을 평가하는 가장 이상적인 방법은 유체 영역과 탱크의 복합적인 상호 작용을 완벽하게 구현하는 것이다. 하지만 과도한 계산 시간과 결과의 정확성이 확보되지 못한 상황에서 LNG 운반선 화물창의 안전성 평가에 적용하기에는 문제가 있다. 많은 연구 단체에서는 불규칙적인 슬로싱 압력 신호를 삼각파 등의 형태로 이상화하여 구조해석에 적용하고 있지만 이 또한 유체의 압축성 및 비선형성을 고려하는데 한계를 드러내고 있다. 본 연구에서는 슬로싱 하중을 받는 구조의 안전성을 평가함에 있어 쌍방향(2-way) FSI(Fluid-Structure Interaction)의 과도한 해석 시간 및 수렴의 어려움을 보안하고 유체의 비선형성을 고려할 수 있는 단 방향(1-way) FSI 기법을 이용하는 절차를 제안하고자 한다.

  • PDF

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Hwang, Mi-Hyun;Kim, Kyung-Hee;Hwang, Byung-Sun;Hong, Un-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect (선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구)

  • Choi, Jihun;Seol, Hanshin;Park, Ilryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

Numerical Study of Flow Characteristics of Scramjet with a Cavity Flameholder (스크램제트 공동 화염 보염기 형상에 따른 유동 특성의 수치적 연구)

  • Jang, Won-Geun;Lee, Hak-Jin;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.603-609
    • /
    • 2014
  • 차세대 제트 추진기관으로 주목받고 있는 스크램제트 엔진의 핵심은 연소기 내부에서의 성공적인 초음속 연소를 필요로 한다. 초음속 연소는 공기-연료 혼합(fuel-air mixing)의 정도에 따라 연소효율이 영향을 받게 된다. 공동형 화염 보염기(cavity flameholder)는 재순환 영역(recirculation zone)을 생성하여 연료 혼합의 효율을 높여 지속적인 초음속 연소가 진행될 수 있는 시간을 제공한다. 본 연구에서는 EDISON 전산유체역학 소프트웨어를 이용하여 공동형 화염 보염기를 지나는 초음속 유동의 재순환 영역과 전압력 변화에 대한 전산 해석을 수행하였다. 초기 형상을 생성하여 유동 해석을 수행한 후, 3개의 형상 변수에 대한 매개 변수 연구를 통하여 공동의 형상과 위치에 따른 재순환영역의 제어가 가능함을 확인하였다.

  • PDF

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle (축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증)

  • Noh, Tae Won;Roh, Tae-Seong;Lee, Hyoung Jin;Lee, Hyunseob;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k-ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.

THE PERFORMANCE ANALYSIS OF A CWP PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.232-238
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic CWP pump, which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

  • PDF

THERMAL-FLUID PERFORMANCE ANALYSIS OF COMPACT HEAT EXCHANGERS HAVING A PERIODIC CHANNEL CONFIGURATION (주기적인 채널형상을 갖는 고밀도 열교환기의 열유동 성능해석)

  • Kim, M.H.;Lee, W.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2007
  • A periodic CFD approach for the performance analysis of compact high temperature heat exchangers is introduced and applied to selected benchmark problems, which are a fully developed 2D laminar heat transfer, a conjugate heat transfer between parallel plates which have exact solutions, and a heat transfer in a real high temperature heat exchanger module. The results for the 2D laminar heat transfer and the 2D conjugate heat transfer showed a very good agreement with the exact solutions. For the high temperature heat exchanger module, the pressure drops were predicted well but some difference was observed in the temperature parameters when compared to the full channel CFD analysis due to assumptions introduced into the periodic approach. Considering its assumptions and simplicities, however, the results showed that the periodic approach provides physically reasonable results and it is sufficient to predict the performance of a heat exchanger within an engineering margin and with much less CPU time than the case of a full channel analysis.

THE PERFORMANCE IMPROVEMENT OF VACUUM CLEANER BY ANALYSIS OF THE FLOW AROUND CENTRIFUGAL FAN (진공청소기용 원심팬 주위의 유동해석을 통한 성능개선)

  • Park, J.W.;Ki, M.C.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.82-87
    • /
    • 2007
  • A cleaner has trouble with too much noise and power consumption. To solve these problems, the investigation for motors, which are the main component of vacuum cleaner, is required. However, it is difficult to analyze the flow by the experimental means because of the high speed of the fan rotation ranging from 30,000 rpm to 50,000 rpm. Moreover it takes much time to perform the numerical simulation for the flow. In this research, it is aimed to analyse the flow through the centrifugal fan which is believed to be a main noise source, by the computational method. The efficiency of the centrifugal fan is affected by friction loss, shock loss and so on. Those losses depend on factors like the velocity of impeller, blade shape and etc. Accordingly, the influence of the shape of impeller on the flow is investigated in this study. The computational analysis was done by changing impeller shapes. The flow around the centrifugal fan is simulated by applying the moving mesh. To verify the validity of the computation results, the air flow rate and the pressure field to the cleaner is compared with the experimental data. All simulations are performed by using commercial code SC/Tetra. The calculated results show good agreement with the experimental ones qualitatively and it is believed to be promising to use computational simulation in the improvement of the vacuum cleaner performance.

  • PDF

THE PERFORMANCE ANALYSIS OF A CIRCULATING WATER PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.69-75
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic Circulating water pump(CWP), which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

CFD Analysis of Engine Inlet Condition for BWB Airfoil using EDISON (EDISON을 이용한 BWB 익형 엔진흡기 유동 해석)

  • Lee, Min-U;Kim, Gi-Deok;Bang, Jun;Lee, Su-Gwan;Jeong, Yong-Su;Han, Jin-Su;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.57-60
    • /
    • 2012
  • 본 연구에서는 현재 국내외에서 연구 중인 Blended Wing Body(BWB) 항공기의 엔진흡기 유동을 해석하기 위해 익형과 비행조건을 변화시켜 가며 전산유체해석을 수행하였다. 엔진의 위치에 따라 엔진이 효율적으로 동작하기 위한 조건인 흡기에서의 유동 속도와 그 분산을 중심으로 해석한 결과 익형 표면에서는 경계층의 영향으로 엔진흡기에서 유동속도가 낮고, 속도분산이 높음을 확인할 수 있었다. 한편, 익형 아랫면에서는 높은 비행속도에서 속도분산이 급격히 증가하였다. 이를 통해, 해석에 사용한 익형이 BWB의 동체로 활용하기에 적합한 엔진흡기조건을 갖는지 판별하였다.

  • PDF