• Title/Summary/Keyword: 전산직교배열

Search Result 19, Processing Time 0.021 seconds

A Optimization of Butterfly Valve using the Orthogonal Array and the Characteristics Fuction (직교배열표와 특성함수를 이용한 Butterfly Valve의 최적설계)

  • Kang J.;Choi J.S.;Park Y.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1967-1974
    • /
    • 2005
  • The butterfly valve has been used to control a flow effectively in the industrial because of its lightweight, simple structure and the rapidity of its manipulation. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. This paper is evaluated the specificity to get the flow characteristic and stability of the butterfly valve using FEM and CFD. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of three dimensional structures to be multi-objective.

  • PDF

Optimization of a Gate Valve using Orthogonal Array and Kriging Model (직교배열표와 크리깅모델을 이용한 게이트밸브의 최적설계)

  • Kang Jin;Lee Jong-Mun;Kang Jung-Ho;Park Hee-Chun;Park Young-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.119-126
    • /
    • 2006
  • Kriging model is widely used as design DACE(analysis and computer experiments) model in the field of engineering design to accomplish computationally feasible design optimization. In this paper, the optimization of gate valve was performed using Kriging based approximation model. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. In addition, we describe the definition, the prediction function and the algorithm of Kriging method and examine the accuracy of Kriging by using validation method.

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array (TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

A Study on the Sequential Design Domain for the Approximate Optimum Design (근사 최적설계를 위한 순차 설계영역에 관한 연구)

  • 김정진;이진식;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.339-348
    • /
    • 2001
  • More often a commercial package for the structural analysis is necessary in the structural optimum design. In this case the task of combining the package with an optimization program must be required, hut it is not so simple because interchanging some data between them is difficult. Sequential approximate optimization is currently used as a natural way to overcome the hard task. If sequential approximate optimization has wide side constraints that the lower limit of design variables is very small and their upper limit is very large, it is not so easy to obtain approximated functions accurately for the whole design domain. This paper proposes a sequential design domain method, which is very useful to carry out sequential approximate optimization in this case. In this paper, the response surface methodology is used to obtain approximated functions and the orthogonal array is used for design of experiments. The sequential approximate optimization of 3-bar and 10-bar trusses is demonstrated to verify the reliability of the sequential design domain method.

  • PDF

Tolerance Optimization of Lower Arm Used in Automobile Parts Considering Six Sigma Constraints (식스시그마 제약조건을 고려한 로워암의 공차 최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1323-1328
    • /
    • 2011
  • In the current design process for the lower arm used in automobile parts, an optimal solution of its various design variables should be found through exploration of the design space approximated using the response surface model formulated with a first- or second-order polynomial equation. In this study, a multi-level computational DOE (design of experiment) was carried out to explore the design space showing nonlinear behavior, in terms of factors such as the total weight and applied stress of the lower arm, where a fractional-factorial orthogonal array based on the artificial neural network model was introduced. In addition, the tolerance robustness of the optimal solution was estimated using a tolerance optimization with six sigma constraints, taking into account the tolerances occurring in the design variables.

A Optimization of Butterfly Valve using the Characteristic Function (특성함수를 이용한 Butterfly Valve의 최적설계)

  • Park, Young-Chul;Choi, Jong-Sub;Kang, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

Design Sensitivity Analysis of Gate Valve Using the Variational Technology (변동 기법을 이용한 게이트 밸브의 설계민감도해석)

  • Kim, Se-Hun;Kim, Seung-Gyu;Jo, Young-Jik;Kang, Jung-Ho;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2008
  • Design technology and speciality production technology to manufacture high quality valve are insufficient in Korea. In order to design the experiments using Taguchi method and Variational Technology Also, from verification of the response model with optimized results was confirmed that usefulness and reliance of application Taguchi method and Variational Technology to structural's optimum design using Taguchi method and Variational Technology.

  • PDF

Optimization of Butterfly Valve's Disc Using the DACE Model Based on CAE (CAE에 기반한 DACE 모델을 이용한 버터플라이밸브 디스크의 최적설계)

  • Park Young-Chul;Kang Jung-Ho;Lee Jong-Moon;Kang Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.96-102
    • /
    • 2006
  • The butterfly valve has been used to control the switch and flux of fluid. While research about the characteristics of butterfly valve fluid have been done, study of the optimum design, considering structural safety, must keep pace with it. Thus, a method is proposed for an optimum butterfly valve. Initially, the stability of the butterfly valve, using FEM and CFD, is evaluated, and a variable is selected using the initial analysis results. Also, the shape optimization design is accomplished using the DACE model. In terms of research results, the experiment satisfied the objective and limitation functions.

Analysis of the micro diffuser/nozzle pump performance of steady states using similitude model and simulations (상사 모델과 전산 수치 해석을 이용한 diffuser/nozzle pump 의 정상 상태에 대한 연구)

  • Park, Sung-Hoon;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2763-2768
    • /
    • 2007
  • Recently, as the semiconductor production technology develops, there has been growing interest in the cooling system using micro fluid pump. Among the various types of micro fluid pump, the valve-less diffuser/nozzle has been extensively studied in recent years. However, the flat-walled diffuser/nozzle flow has not been clearly looked into due to its non-linear characteristics. In this paper, the flow characteristics of the flat-walled diffuser/nozzle have been analyzed using similitude model and simulations. Similitude models are designed so that the flow pattern is same as that of 1/10 scale flow by using high viscous fluid as working fluid. The results are compared to the simulations. It is shown that the flow characteristics of 2D simulation are different from 3D simulations at high Re region, and the measured pump efficiency is highly dependent on the pressure difference as well as the channel geometry. From these results, the desirable conditions for the efficient pump is discussed.

  • PDF