• Title/Summary/Keyword: 전산공력소음해석

Search Result 45, Processing Time 0.018 seconds

A Numerical Study on Aerodynamic Noise Characteristics of the Tandem Cylinders using DES and FW-H Acoustic Analogy (DES와 FW-H 음향상사법을 이용한 탠덤 실린더의 공력소음 특성 연구)

  • Kim, Manshik;Lee, Youn Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.883-891
    • /
    • 2018
  • In this paper, aerodynamic noise simulation was conducted using DES (Detached Eddy Simulation) and FW-H (Ffowcs Williams and Hawkings) acoustic analogy for the tandem cylinders which have configuration similar to a landing gear of airplanes. Numerical simulation for the tandem cylinders whose centers are 3.7D apart was carried out and results were compared with the measured data such as flow characteristics, pressure coefficients on the cylinder surfaces and far-field noise characteristics. It was confirmed that periodically shedded vortices released at the upstream cylinder and impinged on the downstream cylinder surface are major sources of aerodynamic noise. After verifying the computational method of using DES and FW-H acoustic analogy for predicting aerodynamic noise of tandem cylinders, additional simulation was conducted to examine the effect of attaching a splitter plate at the rear of the upstream cylinder. It was confirmed that the noise level in specific frequency band decreased significantly because the splitter plate changed the vortex shedding features and reduced dipole noise source.

THE INVESTIGATION FOR UH-60 HOVERING ACOUSTIC NOISE CHARACTERISTIC ANALYSIS BY COMPUTATIONAL AERO-ACOUSTIC METHOD (전산공력소음해석을 통한 UH-60 제자리비행 공력소음 연구)

  • Park, N.E.;Woo, C.H.;Choi, G.M.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.70-74
    • /
    • 2009
  • The helicopter development technology is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the helicopter external noise flight test methods, conventional military helicopter's(UH-60) experimental results and the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF

THE INVESTIGATION OF THE AERO-ACOUSTIC ANALYSIS METHODS FOR THE HELICOPTER BLADE (헬리콥터 블레이드 공력 소음 해석 기법 연구)

  • Park, N.E.;Woo, C.H.;Lee, S.G.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.302-307
    • /
    • 2008
  • The development technology for the helicopter is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the classification of helicopter external noise and requirements, the noise flight test methods, the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF

THE INVESTIGATION OF THE AERO-ACOUSTIC ANALYSIS METHODS FOR THE HELICOPTER BLADE (헬리콥터 블레이드 공력 소음 해석 기법 연구)

  • Park, N.E.;Woo, C.H.;Lee, S.G.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.302-307
    • /
    • 2008
  • The development technology for the helicopter is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the classification of helicopter external noise and requirements, the noise flight test methods, the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

COMPUTATIONAL ANALYSIS ON DRONE NOISE OF AN AUTOMOBILE WITH OPENED REAR WINDOW (자동차 뒷 창문 개방에 의한 공명소음 전산해석 연구)

  • Bai, I.H.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.26-34
    • /
    • 2013
  • In modern days, automobiles are the most important means of transportation. With the development of automobiles, noises generated during operation has been recognized as a significant factor of performance to provide drivers with better driving environment along with other passengers. In this study, drone noise(pulsating noise), generated at the rear window when its opened, is predicted to understand the physics of its phenomenon at various velocities. The compressible Navier-stokes equation will be used with $6^{th}$ order compact finite difference scheme to analyze the characteristics.

Visualization of Aerodynamic Noise using Computational Aeroacoustics (전산 공력음향학을 이용한 공력 소음의 가시화)

  • Lee Duck Joo;Kim Jae Wook;Lee In Cheol
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.3-7
    • /
    • 2004
  • In this paper, computational aeroacoustics (CAA) method is used for flow-noise analysis and flow-noise visualization. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. An adaptive nonlinear artificial dissipation model and generalized characteristic boundary condition are also used. Aeolion tone noise, cavity noise, and jet noise are investigated. The visualizations of flow-noise are successful and characteristics of noise are studied. It is observed that the propagation directivity of noise is different with that of flow. With the help of CAA method, the visualization of noise is possible.

  • PDF

Analysis of Aerodynamic Noise Generation Characteristics Using Pantograph Panhead 3-D Simple Model (판토그라프 팬헤드 3 차원 단순모델에 대한 공력소음 발생 특성 분석)

  • Yi, Suk-Keun;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.308-308
    • /
    • 2010
  • 본 논문에서는 판토그라프의 공력소음 발생 특성을 규명하기 위하여 단순 모델을 이용하여 그 특성을 분석하였다. 단순 모델은 실제 팬헤드의 사이즈를 고려하여 선정하였고, 이를 통해 음압 해석 알고리즘을 구축하고 소음 발생 메커니즘을 분석하였다. 단순 모델을 선정하여 이를 Lattice Boltzmann Method 를 기반으로 한 전산 유체 해석을 통한 결과를 이용하여 음압 레벨과 음압의 방사형태를 계산하고, 풍동 실험을 통해 이를 검증한다. 풍동 실험에서는 단순 모델을 제작하여 100 km/h 의 속도 환경에서 항력, 양력과 소음을 측정하였다. 단면의 형상에 따른 변화 추이를 검토하였으며 해석결과를 단일 수치로도 정량화하여 제시한다. 최종적으로 정립된 알고리즘을 기반으로 팬헤드의 3 차원 모델을 시뮬레이션 한 결과를 제시한다.

  • PDF

TWO-DIMENSIONAL COMPUTATIONAL AEROACOUSTICS SIMULATION OF SOUND GENERATED BY FLOW AROUND A CIRCULAR CYLINDER (CAA를 이용한 2D 원형 실린더 공력 소음 해석)

  • Park, I.C.;Go, Y.J.;Choi, J.S.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • Researches in the area of aeroacoustics have been conducted by two methods. In the first method theoretical formula or experimentation are utilized, and in the second method flow field analysis and acoustic analogy are utilized. In contrast to the first method, the second method does not need new experiments for every individual change of flow configurations and conditions, and it can predict their effects by the flow field analysis, which makes the second method preferred than the first one. In this paper numerical analysis to predict noise generated by a turbulent flow about a two dimensional circular cylinder by use of CAA (Computational Aeroacoustics) method is conducted and the results are compared to the available experimental data.

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.