• Title/Summary/Keyword: 전방 충돌

Search Result 122, Processing Time 0.021 seconds

Analysis on the Marine Traffic Flow Characteristics for Gamcheon Harbor (감천항 해역에 대한 해상교통특성 분석)

  • Kim Jun-Hoon;Gug Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.397-404
    • /
    • 2006
  • Gamcheon harbor was developed as a multipurpose port to mix processing functions of exclusive piers for bulk cargo such as marine products, domestic cargoes. Since the container terminal was opened in 1997, maximum $40,000\sim50,000$ DWT containership have been incoming and outgoing. However, bemuse the breakwater entrance in Gamcheon harbor is narrow and the crossed vessels are ever-present at breakwater front, marine accident danger is high that grasping traffic characteristics is required in reply. Therefore marine traffic characteristics were analyzed for Gamcheon harbor and Gamcheon approaching waters, included the track and traffic volumes of peak hours period in inbound/outbound and front sea area of the harbor in present.

Analysis on the Marine Traffic Flow Characteristics for Gamcheon Harbor (감천항 입.출항에 관한 해상교통특성 분석)

  • Kim Jun-Hoon;Gug Seung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.137-146
    • /
    • 2006
  • Gamcheon Harbor was developed as a multipurpose port to mix processing functions of exclusive piers for bulk cargo such as marine products. domestic cargo. Since the container terminal was opened in 1997. maximum $40,000{\sim}50,000$ DWT containership have been incoming and outgoing. However, because [he breakwater entrance in Gamcheon Harbor is narrow and the crossed passing of ship is ever-present at breakwater front, marine accident danger is high that grasping traffic characteristics is required in reply. Therefore marine traffic characteristics were analyzed for Gamcheon Harbor, included the track and traffic volumes of peak hours period in inbound/outbound and front sea area of the harbor in present.

  • PDF

Intelligent Driver Assistance Systems based on All-Around Sensing (전방향 환경인식에 기반한 지능형 운전자 보조 시스템)

  • Kim Sam-Yong;Kang Geong-Kwan;Ryu Young-Woo;Oh Se-Young;Kim Kwang-Soo;Park Sang-Cheol;Kim Jin-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.49-59
    • /
    • 2006
  • DAS(Driver Assistance Systems) support the driver's decision making to increase safety and comfort by issuing the naming signals or even exert the active control in case of dangerous conditions. Most previous research and products intend to offer only a single warning service like the lane departure warning, collision warning, lane change assistance, etc. Although these functions elevate the driving safety and convenience to a certain degree, New type of DAS will be developed to integrate all the important functions with an efficient HMI (Human-Machine Interface) framework for various driving conditions. We propose an all-around sensing based on the integrated DAS that can also remove the blind spots using 2 cameras and 8 sonars, recognize the driving environment by lane and vehicle detection, construct a novel birds-eye HMI for easy comprehension. it can give proper warning in case of imminent danger.

New Crash Discrimination Algorithm and Accelerometer Locations (새로운 충돌 판별 알고리즘과 가속도 센서의 위치)

  • 정현용;김영학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.182-193
    • /
    • 2000
  • Several metrics have been used in crash discrimination algorithms in order to have timely air bag deployment during all frontal crash modes. However, it is still challengine to have timely air bag deployment especially during the oblique, the pole and the underride crash mode. Therefore, in this paper a new crash discrimination algorithm was proposed, using the absolute value of the deceleration change multiplied by the velocity change as a metric, and processing the metric as a function of the velocity change. The new algorithm was applied for all frontal crash modes of a minivan and a sports utility vehicle, and it resulted in timely air bag deployment for all frontal crash modes including the oblique, the pole and the underride crash mode. Moreover, it was proposed that an accelerometer be installed at each side of the rails, rockers or pillars to assess the crash severity of each side and to deploy the frontal air bags at different time especially during an asymmetric crash such as an oblique and an offset crash. As an example, the deceleration pulses measured at the left and right B-pillar·rocker locations were processed through the new algorithm, and faster time-to-fires were obtained for the air bag at the struck side for the air bag at the other side.

  • PDF

Development of a FMCW Radar Using a Compensation Algorithm for VCO Nonlinearity (VCO 비선형 보상 알고리듬을 적용한 근거리 측정용 FMCW 레이더 개발)

  • Chun, Joong Chang;Lee, Hyun Soo;Sohn, Jong Yoon;Kim, Tae Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, we have implemented an FMCW radar for a near distance measurement. In the structure of the FMCW radar, it is a key problem to solve the VCO nonlinearity. In this work, we have adopted a VCO nonlinearity compensation algorithm using the spectrum correlation of beat signals. The radar experimented in this work uses an X-band(9.55~10.25GHz) microwave signal, and realizes precision of 3% in the range of 30m. The prototype can be applied to the front surveillance radar such as in vehicle anti-collision and probing robot mission.

Active Safety Features Evaluation with Korean Drivers (능동 안전장치의 한국 운전자 주행 평가)

  • Lee Hwa Soo;Cho Jae Ho;Yim Jong Hyun;Lee Hong Guk;Chang Kyung Jin;Yoo Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • A study assessing driver acceptance level for various active safety systems against Korean drivers has been conducted. A 2013 Cadillac ATS model vehicle was tested along southern outskirt of Seoul including local roadway and interurban highway. Active safety systems included were FCA(Forward Collision Alert), LDW(Lane Departure Warning), SBZA(Side Blind Zone Alert), FRPA(Front/Rear Park Assist), RCTA(Rear Cross Traffic Alert), ACC(Adaptive Cruise Control), and AEB(Autonomous Emergency Braking). Participants experienced the FRPA, RCTA and AEB features in a controlled parking lot with a dummy vehicle and traffic cones as target obstacles. Remaining features have been tested on the accumulated stretched of 106 km long urban and interurban roadway. Series of questionnaires corresponding to each active safety systems have been conducted. Tentative results revealed that RCTA and SBZA systems received favourable ratings compared to the other ones.

Ultrasound Measurement of Coracohumeral Distance in Patients with or without Subcoracoid Impingement (오구돌기하 충돌 증후군 유무에 따른 초음파를 이용한 상완오구돌기 계측)

  • Jang, Suk Hwan;Kim, Sang Bum
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • Purpose: The purpose of this study was to evaluate coracohumeral distance (CHD) in patients with or without subcoracoid impingement with hypothesis that patients with subcoracoid impingement would have narrower CHD. Materials and Methods: One hundred twenty-four patients with subacromial impingement were evaluated. The subjects with subcoracoid impingement which was affirmed clinically and confirmed by ultrasound guided subcoracoid injection (n=28) was compared with patients with subacromial impingement only (n=96). Patients with stiffness and rotator cuff tear were excluded. Absolute CHD was measured on magnetic resonance imaging (MRI) axial images and on ultrasound with the humerus in neutral position and internal rotation. Also relative ratio of distance difference (RRDD) defined as the difference of CHD in neutral position and internal rotation compared with absolute CHD in neutral on ultrasound was also measured. Results: The distance measured in neutral position was similar between US imaging and MRI (p>0.05) and both measurements did not have significant difference between the two groups (p>0.05). On ultrasound, the difference in CHD in internal rotation between the two groups nearly met the level of significance (p=0.07). No significant difference of CHD difference in two humeral positions was seen between the two groups. However, RRDD value was significantly greater in subcoracoid impingement group (p<0.05). Conclusion: No significant difference of CHD was seen between the subcoracoid impingement group and the control group. RRDD value was greater in subcoracoid impingement group suggesting that individualized coracohumeral distance in internal rotation should be taken into account when assessing patients with subcoracoid impingement.

  • PDF

A Study on Vehicle Frontal Structure for Crash Compatibility (상호 안전성 대응 차체 전방 구조에 관한 연구)

  • Shin, Jangho;Kim, Yun Chang;Kim, Hye Yeon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In recent years, rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility between the compact passenger vehicles and the light trucks (i.e., Pickups and SUVs). Vehicle compatibility regarding both self and partner protection in frontal crash of different class vehicles is one of hot issues in vehicle safety. Furthermore, it is expected that the amendment of UNECE-Regulation 94 to implement compatibility issues in couple of coming years. In this study, conceptual design of compatibility compliant frontal vehicle structure which subjects to improve? the distribution of frontal crash loading and structural engagement between vehicles is introduced. The effects of proposed vehicle structure on both possible candidates (i.e. FWRB, FWDB and PDB) for a compatibility evaluation test procedure and car-to-car crash are also investigated.

Analysis of Criteria Regarding Frontal and Side Impacts of Wheelchair Occupant in Vehicle by Computer Simulation Method (컴퓨터 시뮬레이션 방법을 이용한 휠체어 탑재 차량의 전방/측방충돌 시 휠체어 탑승자의 위험도 분석)

  • Kim, S.M.;Lee, M.P.;Park, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.365-369
    • /
    • 2006
  • According to the IIHS (Insurance Institute fur Highway Safety), side impacts are made up 30% of all accidents (reported 1998). In the case of auto accidents, head and neck injuries were most common as 58%, injuries to the body's trunk equaled 32%, and injuries to the abdomen were 21%. Therefore in this study, injury of wheelchair occupant in frontal and side impact of wheelchair loaded vehicle was analyzed using computer simulation method. The occupant was restrained at the rear of wheelchair by the lap belt. The detailed fixation and restrain conditions of the wheelchair occupant are referred to SAR J2249's recommendation. We estimated HIC(Head Injury Criteria) and HNIC (Head and Neck Injury Criteria) based on measured data.

Nonlinear Dynamic Response Structural Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중법을 이용한 차량 전면 구조물의 비선형 동적 반응 구조최적설계)

  • Yoon, Shic;Jeong, Seong-Beom;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1156-1161
    • /
    • 2008
  • Nonlinear dynamic analysis is generally used in automobile crash analysis and structural optimization considering crashworthiness uses the results of nonlinear dynamic analysis. Automobile crash optimization has high nonlinearity and difficulty in calculating sensitivity. Recently the equivalent static load (ESL) method has been proposed in order to overcome these difficulties. The ESL is the static load set generating the same displacement field as the nonlinear dynamic displacement field at each time step in dynamic analysis. From various researches regarding the ESL method, it has been proved that the ESL method is fairly useful. The ESL method can mathematically optimize a crash optimization problem through nonlinear analysis and well developed static optimization. The ESL is applied to nonlinear dynamic structural optimization of the automobile frontal impact problem. An automobile bumper is optimized. The mass of the structure is minimized while some constraints are satisfied.

  • PDF