• Title/Summary/Keyword: 전류-전압법

Search Result 705, Processing Time 0.027 seconds

전기화학적 증착방법을 사용하여 형성한 Al 농도에 따른 Al-doped ZnO 나노세선의 구조적 성질

  • Lee, Jong-Ho;Kim, Gi-Hyeon;No, Yeong-Su;Lee, Dae-Uk;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.261.2-261.2
    • /
    • 2013
  • 에너지 갭이 큰 ZnO 반도체는 빛 투과율이 우수하여 투명성이 좋으며 화학적으로 안정된 구조를 가지고 있어 전자소자 및 광소자 응용에 대단히 유용하다. 일반적으로 화학 기상증착, 전자빔증착과 전기화학증착법을 사용하여 ZnO 나노 구조를 제작하고 있다. 여러 가지 증착 방법 중에서 전기화학증착방법은 낮은 온도와 진공 공정이 필요하지 않으며 대면적 공정이 가능하고 빠른 성장 속도로 나노구조를 효과적으로 성장할 수 있는 장점을 가지고 있다. 본 연구에서는 전기화학증착법을 이용하여 Indium Tin Oxide (ITO) 기판위에 Al 도핑된 ZnO 나노세선 성장시키고 성장시간에 따라 형성한 ZnO 나노세선의 구조적 성질을 조사하였다. ZnO 나노세선을 성장하기 위하여 zinc nitrate와 potassium chloride를 각각 0.1 M을 용해한 용액을 사용하였다. 전기화학증착방법을 사용하여 제작한 ITO 기판 위에 성장시킨 ZnO 나노세선 위에 전극을 제작하고 전류-전압 특성을 측정하였다. Al-doped ZnO 나노세선의 성장되는 조건을 Al 농도별로 0 wt%, 1 wt%, 2 wt% 및 5 wt% 씩 증가시키면서 ZnO 나노세선의 구조적 특성을 분석하였다. X-선회절 (X-ray diffraction; XRD) 실험 결과를 통해 ZnO 나노세선이 성장함을 확인하였고, 성장 시간이 길어짐에 따라 (101) 성장방향의 XRD 피크의 세기가 증가하였다. 전기화학증착시 Al 도핑 농도 증가에 따라 ZnO 나노세선의 지름이 200 nm에서 300 nm로 변화하는 것을 주사전자현미경으로 관측하였다. 이 실험 결과는 전기화학증착방법을 사용하여 제작한 ZnO 나노세선의 Al 도핑 농도에 따른 구조적 특성들을 최적화하여 소자제작에 응용하는데 도움이 됨을 보여주고 있다.

  • PDF

Ferroelectric Properties $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$ Thin Films Deposited by RF Magnetron Sputtering Technique (RF magnetron sputtering법에 의해 제조된 $\textrm{SrBi}_{2}\textrm{Ta}_{2}\textrm{O}_{9}$박막의 강유전 특성에 관한 연구)

  • Park, Sang-Sik;Yang, Cheol-Hun;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.7 no.6
    • /
    • pp.505-509
    • /
    • 1997
  • FRAM(Ferroelectric Random Access memory)에의 응용을 위해 rf magnetron sputtering법을 이용하여 SrB $i_{2}$T $a_{2}$ $O_{9}$(SBT)박막을 증착하였다. 사용된 기판은 Pt/Ti/Si $o_{2}$Si이었으며 50$0^{\circ}C$에서 증착한 후 80$0^{\circ}C$의 산소 분위기 하에서 1시간 동안 열처리하였다. 증착시 증착 압력을 변화시켜 가면서 이에 따른 특성의 변화를 고찰하였다. 박막내의 Bi와 Sr의 부족을 보상하기 위해 20mole%의 Bi $O_{2}$와 30mole%의 SrC $O_{3}$를 과잉으로 넣어 타겟을 제조후 사용하였고 박막들의 두께는 300nm의 두께를 가지며 증착압력에 따라 다른 미세 구조르 보였다. 10mtorr에서 증착한 박막의 조성은 S $r_{0.6}$B $i_{3.8}$Ta/ sub 2.0/ $O_{9.0}$이었다. 이 SBT 박막의 잔류 분극(2 $P_{r}$)과 보전계(2 $E_{c}$)값은 각각 인가 전압 5V에서 18.5 $\mu%C/$\textrm{cm}^2$과 150kV/cm이었고, signal/noise비는 3V에서 4.6을 나타내었다. 5V의 bipolar pulse하에서 $10^{10}$cycle까지 피로 현상이 나타나지 않았으며, 누설 전류 밀도는 133kV/cm에서 약 1x$10^{-7A}$$\textrm{cm}^2$의 값을 보였다.을 보였다.

  • PDF

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

Synthesis of Pentadentate Schiff Base Molybdenum(Ⅴ) Complexes and Their Electrochemical Properties in Aprotic Solvents (다섯자리 Schiff Base Molybdenum(Ⅴ) 착물들의 합성과 비수용매에서의 전기화학적 성질)

  • Kim, Seon Suk;Choe, Ju Hyeong;Choe, Yong Guk;Jeong, Byeong Gu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 1994
  • Pentadentate Schiff base molybdenum(Ⅴ) complexes such as [Mo(Ⅴ)O(Sal-DET)(NCS)] and [Mo(Ⅴ)O(Sal-DPT)(NCS)] were synthesized by Sabat method. The structure of these complexes were identified by elemental analysis, spectroscopy, and thermogravimetric analysis(T.G.A.). It was found that the mole ratio of Schiff base ligand to the complexes was found to be 1 : 1. The redox processes of the complexes were investigated by cyclic voltammetric and differential pulse polarographic technique in nonaqueous solvent containing 0. 1 M tetraethyl ammonium perchlorate(TEAP) as supporting electrolyte at glassy carbon electrode. It was found that diffusion controlled reduction processes of four steps with one electron were 2Mo(Ⅴ)$\rightleftarrow^{e-}$ Mo(Ⅴ)Mo(Ⅳ) $\longrightarrow^{e-}$ 2Mo(Ⅳ), Mo(Ⅳ) $\longrightarrow^{e-}$ Mo(Ⅲ) $\longrightarrow^{e-}$ Mo(Ⅱ)

  • PDF

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis (수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Na Hyun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.326-332
    • /
    • 2021
  • In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid (1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사)

  • Salman, Muhammad;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.603-606
    • /
    • 2020
  • A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

Electrochemistry of bis(1,10-phenanthroline)copper(II)-sodium dodecyl sulfate solution in the presence of MgCl2 (염화마그네슘 존재 하의 비스(1,10-페난트롤린) 구리(II)-도데실황산나트륨 용액의 전기화학)

  • Ko, Young Chun
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.483-487
    • /
    • 2007
  • Electrochemistry of 1.0 mM bis(1,10-phenanthroline)copper(II) $(Cu(ph){_2}^{2+})$ in 100 mM NaCl solution including 27 mM $MgCl_2$ with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ and $E_{1/2}$ of $Cu(ph){_2}^{2+}$ by adding $Mg^{2+}$ shifts to a positive direction compared to the SDS free. The intersection of two lines on ${\Delta}E_p$ vs -log[SDS] plot is determined as a critical micelle concentration (CMC). When $Mg^{2+}$ is added, it seems that the double layer became more compact. And the formation of micelles is retarded.

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

A study on electrical response property of photoconductor film for x-ray imaging sensor (X선 영상센서 적용을 위한 광도전체 필름의 전기적 응답특성 연구)

  • Kang, Sang-Sik;Kim, Chan-Wook;Lee, Mi-Hyun;Lee, Kwang-Ok;Moon, Yong-Soo;An, Sung-A;No, Ci-Chul;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.29-33
    • /
    • 2009
  • Recently, the compound materials(a-Se, $HgI_2$, PbO, CdTe, $PbI_2$, etc.) that are used in flat panel x-ray imager have been studied for digital x-ray imaging. In this paper, the signal detection properties of $HgI_2$ and a-Se conversion layer, are compared. The thick $HgI_2$ film is fabricated by special particle-in-binder method and the conventional vacuum thermal evaporation is used for a deposition of a-Se film. And an electrical characteristic measurements were investigated about leakage current, signal response property and x-ray sensitivity. From the experimental results show that the $HgI_2$ film has a low operation voltage and high signal generation than that of a-Se.

  • PDF