• Title/Summary/Keyword: 전력 제어 시스템

Search Result 3,403, Processing Time 0.029 seconds

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Implementation of a Sensor Node with Convolutional Channel Coding Capability (컨벌루션 채널코딩 기능의 센서노드 구현)

  • Jin, Young Suk;Moon, Byung Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • Sensor nodes are used for monitoring and collecting the environmental data via wireless sensor network. The wireless sensor network with various sensor nodes draws attention as a key technology in ubiquitous computing. Sensor nodes has very small memory capacity and limited power resource. Thus, it is essential to have energy efficient strategy for the sensor nodes. Since the sensor nodes are operating on the same frequency bands with ISM frequency bands, the interference by the devices operating on the ISM band degrades the quality of communication integrity. In this paper, the convolutional code is proposed instead of ARQ for the error control for the sensor network. The proposed convolutional code was implemented and the BER performance is measured. For the fixed transmitting powers of -19.2 dBm and -25dBm, the BER with various communication distances are measured. The packet loss rate and the retransmission rate are calculated from the measured BER. It is shown that the porposed method obtained about 9~12% and 12-19% reduction in retransmission rate for -19.2 dBm and -25 dBm respectively.

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages (고성능 대용량 플래시 메모리 저장장치의 효과적인 매핑정보 캐싱을 위한 적응적 매핑정보 관리기법)

  • Lee, Yongju;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyeong;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.78-87
    • /
    • 2013
  • NAND flash memory has been widely used as a storage medium in mobile devices, PCs, and workstations due to its advantages such as low power consumption, high performance, and random accessability compared to a hard disk drive. However, NAND flash cannot support in-place update so that it is mandatory to erase the entire block before overwriting the corresponding page. In order to overcome this drawback, flash storages need a software support, named Flash Translation Layer. However, as the high performance mass NAND flash memory is getting widely used, the size of mapping tables is increasing more than the limited DRAM size. In this paper, we propose an adaptive mapping information caching algorithm based on page mapping to solve this DRAM space shortage problem. Our algorithm uses a mapping information caching scheme which minimize the flash memory access frequency based on the analysis of several workloads. The experimental results show that the proposed algorithm can increase the performance by up to 70% comparing with the previous mapping information caching algorithm.

Design of a Novel Instrumentation Amplifier using Current-conveyor(CCII) (전류-컨베이어(CCII)를 사용한 새로운 계측 증폭기 설계)

  • CHA, Hyeong-Woo;Jeong, Tae-Yun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.80-87
    • /
    • 2013
  • A novel instrumentation amplifier(IA) using positive polarity current-conveyor(CCII+) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of two CCII+, three resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into two CCII+ used voltage and current follower converts into same currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the CCII+ and used commercial op-amp LF356. Simulation results show that voltage follower used CCII+ has offset voltage of 0.21mV at linear range of ${\pm}$4V. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the gain of 60dB was 400kHz. The IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 130mW at supply voltage of ${\pm}$5V.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System (광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상)

  • Oh, Myung-Min;Lee, Hoon;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.

Introduction to Chang'e-3 and Analysis of Estimated Mission Trajectory (창어 3호 개요 및 임무궤적 추정결과 분석)

  • Choi, Su-Jin;Lee, Donghun;Bae, Jonghee;Rew, Dong-Young;Ju, Gwanghyeok;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.984-997
    • /
    • 2015
  • Chang'e-3 consisting of a lunar lander and exploration rover was launched on December 1, 2013 aboard a Long March 3B rocket flying from Xichang space launch center. Chang'e-3 was inserted into the lunar orbit after about a 5-day transit to the Moon and landed on the targeted landing site after orbiting around the Moon for 8 days. The successful landing of the Chang'e-3 gives a lot of help to analyze the future needs of the subsystem technologies and to figure out the trajectory from launch to lunar landing as well as operation sequences in the development of Korean lunar exploration is scheduled. Therefore, the configuration and analysis of overall mission of Chang'e-3 is performed based on the public information from the press and website. As a result, overall mission trajectory is reconstructed by solving boundary condition and then estimating control variable. Visibility status and eclipse status also analyzes so communication and power charge condition is as good as to operate lunar lander. Mass budget of the lander is derived using ${\Delta}V$ according to specific impulse.

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA (완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

Cell Coverage Based on Calculation of the Voice-Data Erlang Capacity in a WCDMA Reverse Link with Multi-rate Traffic (WCDMA 역방향 링크에서 다중속도 트래픽에 따른 음성/데이터 얼랑용량 계산과 셀 커버리지)

  • Kwon, Young-Soo;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.387-396
    • /
    • 2004
  • A scheme to evaluate the number of users and cell coverage of a WCDMA supporting multi-rate traffic is newly presented through calculation of the realizable Erlang capacity from a derived blocking probability and the path loss from the COST231 Walfisch-Ikegami(W) model. We evaluate the voice-data Erlang capacities at various data rates of 15 kbps to 960 kbps and it is shown that they have a linear relationship to each other. When the E$\_$b//N$\_$o/ is low from 4 ㏈ to 3 ㏈ in case of voice capacity of 50 Erlang at 8 kbps, the result shows the increase for the data capacity of 10 Erlang and the enlargement of 100 m for the cell coverage at low rate of 15 kbps, and the increase of 0.11 Erlang and the enlargement of 40 m at high rate of 960 kbps. The increase of the blocking probability results in the increase of the Erlang capacity, but not an effect on the cell coverage, and the increase of active users in a cell results in the decrease of the coverage.