• Title/Summary/Keyword: 전력 계통

Search Result 3,914, Processing Time 0.028 seconds

Effects of Construction and Operation of Nuclear Power Plants on Benthic Marine Algae (원자력발전소의 건설과 가동이 저서 해조류에 미치는 영향)

  • 김영환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • During the past several decades, electricity generating plant increased with remarkable rapidity in Korea. Recently the increase has been much more rapid as the rate of industrialization has accelerated. Construction of nuclear power plants in coastal areas inevitably caused the perturbation of critical coastal habitats and thus influenced marine algal species composition. Particularly, an increase in the building of nuclear power plants led the amounts of heat discharged to increase exponentially. As far as the effects of cooling water and thermal discharges are concerned, benthic marine algae are likely to be vulnerable to a discharge. Heated effluents from nuclear power plants, with the temperature rises of 7~12$^{\circ}C$ under normal operating and design conditions, are discharged through the discharge canal and into natural water bodies. It is clear that the characteristic marine algal community is developed in the area affected by the thermal discharges; i.e. low species richness and low species diversity. Nevertheless, it is worthwhile to note that elevated temperatures exert differential effects depending on the algal populations. Benthic marine algae grown at the discharge canal can be regarded as warm tolerant species. 35 species (4 blue-green, 9 green, 8 brown and 14 red algae) of marine algae occurred more than 20eye frequency at discharge canal of three nuclear power plants in the east coast during 1992 ~ 1998 and thus can be categorized as warm tolerant species in Korea. To minimize the ecological impacts of waste heat on benthic marine algae, it is recommended that, in the future, nuclear power plants will have to employ some form of closed-cycle cooling for the condensers.

  • PDF

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery (리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Kim, Byung-Mok;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.590-597
    • /
    • 2018
  • Recently, the installation of PV systems has been increasing due to the worldwide interest in eco-friendly and renewable solar energy. On the other hand, the output power of PV systems is influenced strongly by the surrounding weather conditions. In addition, the entire operation efficiency of PV systems may be decreased considerably even if only some of the PV modules are in the shade. In other words, the existing control method at which strings with modules in series are connected to an inverter may be not operated in the case that the string voltage in partial shade is lower than the operating range of the grid connected inverter. To overcome these problems, this paper proposes an operation efficiency improvement device of a PV system using a Li-ion battery, which can compensate for the voltage of each string in the PV system when it is partially shaded. In addition, this paper presents the modeling of the operation efficiency improvement device, including PV strings, Li-ion battery and a 3-Phase grid inverter based on the PSIM S/W. From the simulation results, it was confirmed that the proposed control method can improve the operating efficiency of PV systems by compensating for the string voltage with partial shade.

A Study on Output Enhancement Method of PV Array Using Electrical Circuit Reconfiguration Algorithm (전기적 회로절체 알고리즘에 의한 태양광 어레이의 출력향상 방안에 관한 연구)

  • Kim, Byung-Mok;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.9-17
    • /
    • 2020
  • Recently, RES (renewable energy source) projects have been spreading all over the world as an alternative to solve the shortage of energy and environmental problems caused by fossil fuel consumption. The Korean government also supported the policy and demonstration project to increase the proportion of renewable energy to 63.8[GW] until 2030, which is 20[%] of the total power generation. On the other hand, output loss of a PV array can occur when the surrounding high-rise buildings and trees shade a PV array. Therefore, this paper proposes an algorithm to improve the output loss of a PV array, which electrically changes a circuit configuration of PV modules by wiring and switching devices. Furthermore, this study modeled a PV system based on PSIM S/W, which was composed of a PV array, a circuit configuration device, and a grid-connected inverter. From the simulations results with the modeling and test device, the existing method showed no output when 50% of the shade occurs in PV modules. In contrast, the proposed method could produce the output because the voltage in the PV module could be restored to 246[V], and the operation efficiency of the PV system could be improved by the operation algorithm of the circuit configuration device.

A Study on the Profitable Urban Park Model using Smart Street Light System (스마트 가로등 시스템을 적용한 수익형 도시공원모델에 관한 연구)

  • Lee, Ji-Hee;Cho, Han-Bo;Kim, Tae-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, as the social interest increase has been focused on new renewable energy system to build-up sustainable urban planning system, the related studies have been actively conducting. As well as in other areas, the construction area, which accounts for over 40% of the total energy consumption, clearly showed this tendency. Whereas, various landscape facilities applying renewable energy equipments have been manufactured and installed, systematic study available for planning and designing is rarely found in Korea. This study is expected to contribute to the landscape planning and designing by quantifying the energy-efficient and economic advantages of the renewable energy system for landscape facilities. For this purpose, the analysis on the energy-efficiency and economic values under the scenario that the current fossil power supply for the streetlights in urban parks in Seoul, Daegu, and Incheon were replaced by photovoltaic power generation were performed through RETScreen$^{(R)}$ a clean energy simulation program based on the NASA Satellite Meteorological Data. As a result, the generated power and the economic values vary depending on the climatic features of the appointed cities. This study will be used to build up the effective decision-making in applying the clean renewable system to the plan and design of landscaping.

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

The Effects of Posture and Sleep Deprivation on Heart Rate Variability (자세와 수면 박탈이 심박 변이도에 미치는 영향)

  • Shim, Young-Woo;Yang, Dong-In;Kim, Nam-Hyun;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • Autonomic nervous system (ANS) acts as a control system functioning largely below the level of consciousness, and controls visceral functions. The activity of the ANS has been assessed by means of the heart rate variability (HRV). It has been reported that HRV is dependent on sex, age, body mass index, and smoking, etc. However, the effects of posture and sleep deprivation on HRV have rarely been reported. Objective of our work was to find out which posture is appropriate for stable HRV. We measured the number of sleep deprivation and HRV using power spectrum in six stages for 30 minutes. Increased low frequency (LF) power and high frequency (HF) power indicate enhanced sympathetic and parasympathetic activity, respectively. We determined the LF/HF ratio to minimize individual difference. It was found that sleep deprivation by awakening up subjects was affected by posture, which resulted in changes of LF/HF. Although LF/HF varied with time, it was more stable in sitting than in supine. In conclusion, we recommend sitting posture when measuring HRV because of less sleep deprivation resulting in less variation in LF/HF.

Study on the Drying Characteristics of Poultry Manure for Its Dryer Development (계분건조기 개발을 위한 계분의 건조특성 연구)

  • 장동일
    • Korean Journal of Poultry Science
    • /
    • v.20 no.3
    • /
    • pp.141-149
    • /
    • 1993
  • In order to develop a poultry manure dryer, a pilot dryer was designed and drying experiments were conducted to investigate the drying characteristics of poultry manure. According to the results, the pilot dryer could be operated without any air pollution problems. When poultry manure was dried from 79.2%(w.b. basis) moisture content, the final moisture content ranged from 38.7% to 57.9% depending upon the drying conditions. The drying results showed that drying rate was 189.8~198.0 kg/h and moisture evaporation rate was 124.0~125.4kg-$H_2$O/L. For this drying, electricity requirement was 9.5~19.3 Wh/kg and fuel consumption rate was 6.9~9.3 kg-$H_2$O/L with 50.2~65.1% thermal efficiency.

  • PDF

A Study on the Site Acceptance Test(SAT) Evaluation Algorithm of Energy Storage System using Li-ion Battery (리튬이온전지를 이용한 전기저장장치의 SAT용 성능평가 알고리즘에 관한 연구)

  • Park, Jea-Bum;Kim, Byung-Ki;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • Recently, standardization of installation progress and technology of site acceptance test(SAT) for energy storage system(ESS) are being required due to performance of ESS depending on working condition and environment even though the quality and safety of each component of ESS is guaranteed. And also, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool, in order to more accurately and reliably validate the performance of the ESS in advanced countries. Therefore, this paper proposes evaluation algorithm for SAT to evaluate performance of ESS and presents modeling of SAT test equipment for ESS by using PSCAD/EMTDC. Furthermore, 30[kW] scaled portable test equipments is implemented based on the proposed algorithm and modeling. From the various simulation and test results, it is confirmed that performance of ESS related to characteristics of capacity and Round-trip efficiency, Duty-cycle efficiency, low voltage ride through(LVRT) and Anti-islanding can be accurately evaluated and that the simulation results of PSCAD/EMTDC are identical to test results of 30[kW] test equipment.

Economical Analysis of the PV-linked Residential ESS using HOMER in Korea (HOMER를 이용한 PV 연계 가정용 ESS의 경제성 분석)

  • Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • Europe and North America are paying attention to residential ESS(Energy Storage System) that can manage energy efficiently. The ESS is a system that stores and manages the electric power by charging and discharging the battery. The ESS is generally used in conjunction with photovoltaic systems. The ESS supplies the load of the power generation time and stores the remaining PV power to supply the load at the non-power generation time. However, due to the high price of residential ESS, low electric rates and increasing block rates, there is no market of residential ESS in Korea. This paper reviews the price condition and the capacity for applying PV and residential ESS to household of apartments using HOMER in Korea.