• Title/Summary/Keyword: 전력전송모듈융합

Search Result 13, Processing Time 0.018 seconds

A Design of an AMI System Based on an Extended Home Network for the Smart Grid (스마트 그리드를 위한 확장 홈 네트워크 기반의 AMI 시스템 설계)

  • Hwang, Yu-Jin;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.56-64
    • /
    • 2012
  • A smart grid is the next generation power grid which combines the existing power grid with information technology, so an energy efficient power grid can be provided. In this paper, in order to build an efficient smart grid an AMI system, which gears with the existing home network and provides an user friendly management function, is proposed. The proposed AMI system, which is based on an extended home network, consists of various functional units; smart meters, communication modules, home gateway, security modules, meter data management modules (MDMM), electric power application modules and so on. The proposed home network system, which can reduce electric power consumption and transmit data more effectively, is designed by using IEEE 802.15.4. The extended home gateway can exchange energy consumption information with the outside management system via web services. The proposed AMI system is designed to enable two-way communication between the home gateway and MDMM via the Internet. The AES(Advanced Encryption Standard) algorithm, which is a symmetric block cipher algorithm, is used to ensure secure information exchange. Even though the results in this study could be limited to our experimental environment, the result of the simulation test shows that the proposed system reduces electric power consumption by 4~42% on average compared to the case of using no control.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

Study on Remote control and monitoring system of the multipurpose guard rail using USN (USN을 이용한 다목적 가드레일의 원격제어 및 모니터링 시스템에 관한 연구)

  • Song, Je-Ho;Lee, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7176-7181
    • /
    • 2015
  • This thesis is about the system where the solar module is attached to the high functional guardrail posts with anti-weed, anti-plant, and road-kill applied to produce internal power, enabling the integrated control and real-time monitoring of appearance of wildlife and road conditions using the USN. The whole system consists of a photovoltaic module(PV), a detection sensor(pyroelectric), a controller(operation select and motion sensor), the USN system, the DB(sound and flash), an output unit of sound and flash, and the control system of road-kill prevention and safety induction for vehicles. Thus this study aims to address the remote control and monitoring system of multipurpose guardrails to improve road environment, prevent road-kills, protect wild animals, and guide cars safely by using the USN which is combined with new renewable energy and IT convergence technology. As a result of the study on the remote control and monitoring system using the USN, it was ascertained that the response time of the unmanned sensing system was within 5.1 ms with the current consumption of 0.328 mA, and the data transmission speed of the remote control system was 250 kbps with the current consumption of 0.283 mA.