• Title/Summary/Keyword: 전력분배기/합성기

Search Result 14, Processing Time 0.017 seconds

A Ka-band 10 W Power Amplifier Module utilizing Pulse Timing Control (펄스 타이밍 제어를 활용한 Ka-대역 10 W 전력증폭기 모듈)

  • Jang, Seok-Hyun;Kim, Kyeong-Hak;Kwon, Tae-Min;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.14-21
    • /
    • 2009
  • In this paper, a Ka-band 10 W power amplifier module with seven power MMIC bare dies is designed and fabricated using MIC technology which combines multiple MMIC chips on a thin film substrate. Modified Wilkinson power dividers/combiners and CBFGCPW-Microstrip transitions for suppressing resonance and reducing connection loss are utilized for high-gain and high-power millimeter wave modules. A new TTL pulse timing control scheme is proposed to improve output power degradation due to large bypass capacitors in the gate bias circuit. Pulse-mode operation time is extended more than 200 nsec and output power increase of 0.62 W is achieved by applying the proposed scheme to the Ka-band 10 W power amplifier module operating in the pulsed condition of 10 kHz and $5\;{\mu}sec$. The implemented power amplifier module shows a power gain of 59.5 dB and an output power of 11.89 W.

An Aperture-coupled Microstrip Shaped-beam Array antenna for the PCS Basestation. (개구 결합 구조를 갖는 PCS 기지국용 마이크로스트립 정형 빔 배열 안테나)

  • 여운식;김광조;강승택;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.363-644
    • /
    • 1997
  • This paper presents the design and fabrication of a shaped-beam array antenna which will be used for a PCS basestation using structure that is coupled to a microstrip line by an aperture on the interening ground plane. The shaped-beam pattern is obtained by an antenna synthesis method. An array antenna considering the mutual coupling between array elements patches) and a feeding network are designed by CAD tools. The feeding network is designed by using the Wilkinson power divider to obtain the optimized shaped-beam. The designed results are compared with the measured data.

  • PDF

An Aperture-coupled Microstrip Shaped-beam Array Antenna for the PCS Basestation (개구 결합 구조를 갖는 PCS 기지국용 마이크로스트립 정형 빔 배열 안테나)

  • Yeo, Un Sik;Kim, Gwang Jo;Gang, Seung Taek;Kim, Hyeong Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.636-636
    • /
    • 1997
  • This paper presents the design and fabrication of a shaped-beam array antenna which will be used for a PCS basestation using structure that is coupled to a microstrip line by an aperture on the intervening ground plane. The shaped-beam pattern is obtained by an antenna synthesis method. An array antenna considering the mutual coupling between array elements(patches) and a feeding network are designed by CAD tools. The feeding network is designed by using the Wilkinson power divider to obtain the optimized shaped-beam. The designed results are compared with the measured data.

Compact and Broadband 90° Coupler Using a Metamaterial (메타 물질을 이용한 초소형, 광대역 90° 커플러)

  • Kim, Hong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.844-847
    • /
    • 2012
  • By using LHTL(Left-Handed Transmission Line) which is a form of a metamaterial and conventional RHTL (Right-Handed Transmission Line), we designed, fabricated and tested a broadband $90^{\circ}$ coupler which is a basic circuit for I-Q vector signal generation. Synthetic LHTL and RHTL were implemented with capacitors and inductors only, that the size is minimized. Also, by implementing a Wilkinson power divider which is required for the suggested circuit using a synthetic RHTL, the size of whole circuit is only $11mm{\times}12mm$. For the frequency range 0.8~1.25 GHz, the phase difference at the outputs maintained $90^{\circ}{\pm}5^{\circ}$ and thus, a broadband $90^{\circ}$ coupler could be made in a compact form. for the same frequency range, the insertion loss is less than 1.6 dB and return loss is more than 10.1 dB. To the best of our knowledge, this is the smallest and broadband $90^{\circ}$ coupler for the frequency range and if the circuit is made with MMIC(Monolithic Microwave Integrated Circuit) technology, the size will be reduced much further.