• Title/Summary/Keyword: 전력구 터널

Search Result 58, Processing Time 0.022 seconds

쉴드터널의 계측시스템 구축

  • 진치섭;김성준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.12-25
    • /
    • 1995
  • Shield 터널의 굴진에 따른 지반변위를 Real Time으로 측정하여 지반변위를 가장 작게 일으키는 굴진 Pattern을 결정하는 것이 계측시스템구축의 목적이다. 대상지반은 부산시 구포전력구 현장의 대표적인 지반이라 생각되는 Silt 층인 #11 작업구 인근과 모래층인 #7 작업구 인근에서 각각 실시하였다. 계기매설에서 계측결과분석은 1994년 6.22-11.5에 수행하였다. 계측결과로부터 얻어지는 효과는 Shield 터널굴진에 따른 지반변위의 형태와 크기를 파악할 수 있고 가장 적절한 굴진 Pattern 제시로 인근 매설물에 영향을 미치지 않는 시공을 가능케 하며 자동계측의 계기매설 및 계측기술을 습득할 수 있다. 본 전력구 공사에서는 자동계측용 Computer Software 및 관련장비를 확보하고 국내 최초의 Shield 터널 자동계측을 수행하였다.

  • PDF

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2- (소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구-)

  • Kim, Julie;Lee, Hyo;Kim, Dave;Ko, Tae-Young;Lee, Simon
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • With increasing needs in power, Singapore is requiring stronger power transmission. Singapore Transmission Cable Tunnel is underground tunnel for transmission system installation such as 400 kV cable. This Transmission Cable Tunnel is 35 km long in total. The North-South Transmission Cable Tunnel is 18.5 km long and there is a total of three (3) contracts; NS1, NS2 and NS3 in respect of the design and construction. The East-West Transmission Cable Tunnel is 16.5 km long, and also there is a total of three (3) contracts; EW1, EW2 and EW3. Among of them, SK E&C has been awarded and operating contract EW2 and NS2. In scope of works, each contract has 3 to 4 shafts which connect aboveground and underground high volt cable and those shafts are used as TBM launching shafts during construction. Transmission Cable Tunnel is undercrossing middle of Singapore and most of shafts are located in urban area. Thus, optimal blasting design satisfying high blasting efficiency as well as blasting vibration limit of Singapore is highly required. Blasting design for large shaft of Singapore Transmission Cable Tunnel follows blasting vibration limits in Singapore and reflects our blasting engineering skills. With Singapore Transmission Cable Tunnel Contract EW2, it is expected that our excellent blasting engineering and performance skills can be delivered to the world.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Study on selection and basic specifications design of shield TBM for power cable tunnels (터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구)

  • Jung Joo Kim;Ji Yun Lee;Hee Hwan Ryu;Ju Hwan Jung;Suk Jae Lee;Du San Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2023
  • Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.