• Title/Summary/Keyword: 전두엽연합령

Search Result 5, Processing Time 0.018 seconds

The Relationship between Conservation Reasoning and Functional Prefrontal Lobe in Elementary School Students (초등학교 저학년 학생의 전두엽연합령의 기능과 보존논리 형성과의 관계에 대한 연구)

  • Kim, Young-Shin;Kwon, Yong-Ju;Bae, Yoon-Ju;Jeong, Jin-Su;Jeong, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.417-428
    • /
    • 2004
  • Conservation reasoning makes operational thought possible as a functional tool and it is the essential concept not only in the area of science and mathematics but also in several aspects of daily life. The abilities to solve mathematical problems and that of scientific reasoning and abstract way of thinking depend on whether thereis conservation reasoning or not and they are critical concepts that enables us to confirm the steps of cognitive development. Therefor in the study, we emphasized the issue that is the ways to speed up the scientific era by analyzing the correlation between the formation of conservation reasoning and neuro-cognitive variables. About 50% of 1-3 grade students did not had conservation reasoning skills. The formation of conservations was not linear. Scientific reasoning ability, planing and inhibiting ability were significantly different in levels of conservation, And, conservation reasonings were significantly correlated with cognitive variables. Scientific reasoning and planning ability significantly explained about 20% of the conservation reasoning ability of 1-3 grades.

How Do the Prefrontal Lobes Mediate Scientific Reasoning and Conceptual Change in Adolescents ? (청소년들에게서 전두엽연합령은 어떻게 과학적 추론 및 과학개념 변화의 수행을 매개하는가?)

  • Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.427-441
    • /
    • 1998
  • The present study tested the hypothesis that adolescents' performance on scientific reasoning tasks and their ability to change theoretical concepts during instruction are mediated by prefrontal-cognitive functions, such as planning and inhibiting. Subjects sampled from four Korean secondary schools were administered a test of scientific reasoning ability and tests of the prefrontal lobe functions. A series of lessons on theoretical concepts was also administered. Subjects' performance on the test of scientific reasoning and pre- to posttest gains in the concept test were used as dependent variables. This study found that students' planning and inhibiting abilities were highly correlated with and they significantly predicted their scientific reasoning ability and conceptual gains. Further, principal component analysis showed prefrontal lobe functions were categorized into two main components. Component 1, which was loaded by planning and working memory functions, was termed as the representing process. Component 2, which was loaded primarily by the inhibiting functions, was termed as the inhibiting process. Scientific reasoning and conceptual change were also linked to these two components, indicating that these cognitive processes are mediated by both representing and inhibiting processes.

  • PDF

A Plateau and Spurt Pattern of Neurological Maturation, Scientific Reasoning Development and Conceptual Change in Korean Secondary School Students (중등학교 학생들의 신경기능 성숙, 과학적 사고 발달 그리고 개념 변화에서 밝혀진 비선형적 발달의 정체와 급등 현상)

  • Kwon, Yong-Ju;Lawson, Anton E.
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.589-600
    • /
    • 1998
  • The present study tested the hypothesis that adolescent's prefrontal lobe growth plateau and spurt exists and that this plateau and spurt influence students' ability to reason scientifically and to learn theoretical science concepts. In theory, maturation of the prefrontal lobes during early adolescence allows for improvements in students' abilities to inhibit task-irrelevant information and coordinate task-relevant information, which along with both physical and social experience, influences scientific reasoning ability and the ability to reject scientific misconceptions and accept scientific conceptions. Two hundred six students ages 13 to 16 years enrolled in four Korean secondary schools were administered tests of prefrontal lobe functions, scientific reasoning, and theoretical concepts derived from kinetic-molecular theory. A series of 14 lessons designed to teach the concepts were then taught. The concepts test was then re-administered following instruction. As predicted among the 14-year-olds, performance on the measures of prefrontal lobe functions, scientific reasoning, and conceptual change remained similar or regressed. Performance then improved considerably among the 15 and 16-year-olds. Because so few of the present students were able to undergo this apparently necessary conceptual change, the value of introducing theoretical concepts to early adolescent is questioned.

  • PDF

The Relationship Between the Functions of Prefrontal Lobe and the Formation of Conservation Logic in Elementary School Children (초등학교 고학년 학생의 전두엽연합령 기능에 따른 보존논리 형성 정도)

  • 김영신;나은미;권용주;정완호
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • The purpose of this study is to investigate the functions of prefrontal lobe on the formation of conservation scheme of elementary students. In this study, 107 students of 4th to 6th grades were selected from the elementary school in Seoul area. As to the research,4 items for conservation logic test from GALT test sheet were used. The planning ability, inhibiting ability and reasoning ability were measured for the prefrontal lobe functions. About 30% of 4-6 grade students did not have volume conservation logic skills. The formation of conservations was not linear. Inhibiting ability was significantly different in level of conservation. And, conservation logic skills were significantly correlated with cognitive variables. Reasoning ability was significantly explained about 10% of the conservation logic in 4-6 grades.

  • PDF

The Role of The Prefrontal Lobes in Scientific Reasoning (과학적 추론 능력의 발달에서 전두엽연합령의 역할)

  • Hur, Myoung;Lawson, Anton E.;Kwon, Young-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.525-540
    • /
    • 1997
  • The present study tested the hypothesis that maturation of the prefrontal lobes is a crucial factor determining the performance of scientific reasoning tasks, Functions of the prefrontal lobes, such as activating relevant information, sequential planning and monitoring, and inhibiting irrelevant information, are related thinking patterns with scientific reasoning. Therefore, we inferred the idea that the prefrontal lobes play an important role in scientific reasoning. To test the hypothesis. the present study investigated a prefrontal lobe patient's task solving procedures in scientific reasoning tasks and the correlation and regression analysis between a test of prefrontal lobe function and two scientific reasoning tasks, The perseverative errors in the Wisconsin Card Sorting Test(WCST) was used as a measure of the prefrontal lobe function, The Melinark Type Task and the Classroom Test of Scientific Reasoning were used as measures of scientific reasoning abilities. Ages and Group Embedded Figure Test were also used as measures of two alternative hypotheses, general maturation and field independency respectively. The prefrontal lobe patient showed a crucial deficiency in solving scientific reasoning tasks. In the tasks, the patient could not used the reasoning of If... and... then... therefore pattern. In correlation study, the perseveration errors of the WCST showed a significantly negative correlation with two scientific reasoning tasks. Multiple regression study also showed that the perseveration errors measured as a function of the prefrontal lobes have more contribution to scientific reasoning ability than contributions of alternative hypotheses. Therefore, the present study supported the hypothesis that prefrontal lobes play a crucial role in scientific reasoning ability, What function of the prefrontal lobes do play crucial role in scientific reasoning? The present study provided an explanation for the question, which inhibiting ability of the prefrontal lobes is responsible for the scientific reasoning ability, in a part at least. That is, perseverative tendency in task-solving procedures causes a deficiency of an ability to inhibit the wrong information to solve a task. The present study provided a possibility of neuropsychological approach in science education research. The present study also showed an importance of the prefrontal lobe development in the performance of scientific reasoning task.

  • PDF