• Title/Summary/Keyword: 전동-발전기

Search Result 59, Processing Time 0.026 seconds

Characteristic Analysis of Integrated Power System and Propulsion Motor Comparison for Electric Vessels According to the Driving Condition (전기추진선박의 운전조건별 전력특성 및 추진전동기 특성 비교 해석)

  • Lee, Sang-Gon;Jeong, Yu-Seok;Jung, Sang-Yong;Lee, Cheol-Gyun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.96-103
    • /
    • 2011
  • This paper deals with the characteristic analysis of the integrated power system applied for the electric propulsion ships. This includes the electric power system modeling which is accomplished with the electric power network mainly composed of generators, switchboards, variable frequency devices, electric motors, and etc. In addition, performance comparison between the permanent magnet synchronous motor (PMSM) and the induction motor (IM) for 3.7MW ship propulsion has been done. In order to investigated the main performance of propulsion motor, a coupled model taking into account torque density, copper loss, iron loss, efficiency, power factor, and torque ripple using finite element analysis (FEA) has been employed.

Analysis and Design of high-efficiency Permanent Magnet Synchronous Motor/Generator for Renewable Energy Application (신재생 에너지 적용을 위한 고효율 영구자석 동기 전동/발전기의 해석 및 설계)

  • You, Dae-Joon;Kim, Il-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.955-964
    • /
    • 2011
  • In renewable energy system such as flywheel energy storage system, wind power and solar power, the motor/generator is the important key for offering the electric energy to the electric loads. For example, the heavy and large flywheel is rotated by electromagnetic torque of pemanent magnet synchronous motor (PMSM) and, in case of a breakdown of electric current, the PMSM used as generator supplies electric energy for the various electric utilities using mechanical rotation energy of the flywheel. Thus, design of a motor/generator should be performed in effort to reduce cogging torque and electromagnetic loss for high efficiency. In our paper, a slotless permanent magnet synchronous motor/generator (SPMSM/G) with output power 15kW at the rotor speed 18000rpm is designed from electromagnetic analysis and dynamic performance analysis. In analytical approach, design parameters such as back electro-motive force (back EMF), inductance and electromagnetic torque are derived from analytical method which is one of the electromagnetic analysis method. And using the design parameters, this paper deal with system design considering the driving characteristics and electric load in required power. Finally, the analytical results are verified by the experiment and finite element method (FEM).

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

Comparison of Slotted and Slotless Ring-wound PM Brushless Machines for Electro-Mechanical Battery (EMB용 전동발전기 선정을 위한 슬롯형과 슬롯리스 Ring-wound형 영구자석 브러시리스 기기의 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Sub;Ryu, Dong-Wan;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • Electro-mechanical battery (EMB) consists of a high-speed fly wheel with an integral motor/ generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the EMB motor/ generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper we present the comparison of conventional slotted and slotless ring-wound types, aimed at EMB and other high-speed drives. We firstly discuss the topology of each machine for this particular application. these machines are primarily designed as 1kW two-pole PM generator with the rated speed of 40000 rpm. the motoring torque of 0.51 Nm has to be enough to accelerate the flywheel to the rated speed. We then present the comparison of the open-circuit field, the armature reaction field and winding inductance. next we analyze the induced voltage and the developed torque per unit stack length and unit weight of different machines. Finally, we estimate and compare the losses and the efficiency at motoring and generating modes.

  • PDF

Design, Manufacture and Performance Characteristics under Each Mode of High-Speed Motor/Generator for Electro-Mechanical Battery System (전기기계식 배터리 시스템용 초고속 전동발전기의 설계, 제작 및 모드별 특성)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu;Ham, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.400-407
    • /
    • 1999
  • This paper treated the design, manufacture and the performance characteristics under each mode of high speed motor/generator for an electro-mechanical battery(EMB). This machine is employed as an integral part of a flywheel energy storage system(FESS), i.e., a modular flywheel system to be used as a device for storing electrical or mechanical energy. In this machine, the magnetic field system is constructed by using special magnet array, dipole Halbach array with 16 permanent magnet segments and the armature is composed of a plastic bobbin and multi-phase windings with Litz wire. The magnet array produces a highly uniform dipole field without back iron. The motor/generator is 3-phase machine in which the dipole Halbach array surrounding the winding is rotating. Since there are no iron laminations, this field system offers some unique advantages for the simplicity of the design and the theoretical prediction of characteristics of a high speed electric machine. This paper describes the results obtained when EMB system was tested in the laboratory.

  • PDF

A Development of Maintenance Scheduling Program Based on Windows (Window환경에 기초한 발전기 예방정비계획 프로그램 개발)

  • Park, Young-Moon;Park, Jong-Bae;Won, Jong-Ryul;Jhong, Man-Ho;Kim, Jin-Ho;Choo, Jin-Boo;Jeon, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.823-825
    • /
    • 1996
  • This paper proposes a preventive maintenance scheduling system which is a user-friendly decision-making support system. The objective of the development of the package is to supply KEPCO's working experts with a useful tool for gaining a practical maintenance schedule. This program based on the MS Windows is made up of two main modules. The first is an interactive decision-making support module(IDSM). The main objective of this module is to provide various useful text and graphic information to users, and enable practicing engineers with sensitivity analysis of a targeting maintenance schedule. The second is a mathematical optimization module(MOM). In this module, the objective function of levelizing net reserve ratio with daily time-increment is optimized using the relaxation method.

  • PDF

Development of a Flywheel Energy Storage System using Superconducting Magnetic Bearing (초전도 플라이휠 에너지 저장시스템 개발)

  • 정환명;연제욱;최재호;고창섭
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.433-441
    • /
    • 1999
  • This paper presents a S-FES(Superconducting magnetic becuing Flywheel Energy Storage System) for the p purpose of replacing battery used to store the energy. Especially, the design elements of FES, such as the b beming, wheel mateηaI, and power converter, etc., are described. The design and manufacturing techniques of t the controllable IXlwer converter are proposed to generate the sinusoidal output current in the high speed operation and to get the const빠synchronous motor with halbach cuTay of high coesive I\d-Fe-B permanent magnet is used as the driver of F FES. The proposed S-FES system shows the stable rotation characteristics at high speed range about l 10,000[rpm]. To verify the validity of proposed system, the comparative study with the conventional ball b beming s~rstem is proceeded and it is well confirmed with the result of the lower friction losses of S-FES S system.

  • PDF

A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor (초전도 부상 플라이휠 에너지 저장시스템의 구동을 위한 전동/발전기)

  • Go, Chang-Seop;Yeon, Je-Uk;Choe, Jae-Ho;Jeong, Hwan-Myeong;Hong, Gye-Won;Lee, Ho-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.411-420
    • /
    • 2000
  • The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy system) is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy. In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal current for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment.

  • PDF

Harmonic Reduction of Electric Propulsion Ship by Multipulse Drive (다중펄스 드라이브에 의한 전기추진선박의 고조파 저감)

  • Kim, Jong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.425-431
    • /
    • 2011
  • The harmonic distortion level may be significant in electric propulsion systems, as the main loads usually are variable speed propulsion/thruster drives. Distortion of currents and supply voltage waveforms may lead to: Increased power dissipation(losses) in equipment connected to the network, such as generators, motors, transformers, cables, etc., from the harmonic currents, may cause overheating and deterioration of the insulation, and reduced life time of the equipment. In this paper introduced the canceling method of harmonic currents by a multipulse drive with phase shifting transformer. The simulation results indicated a good speed response to the middle speed range of electric propulsion motor. And also, THD(total harmonic distortion) and torque ripple could be reduced in comparing the 12-pulse drive with 6-pulse drive.