• Title/Summary/Keyword: 전동 선형 메커니즘

Search Result 2, Processing Time 0.016 seconds

Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어)

  • 신호철;강창회;정승호;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.

Concept Design of an Active Steering Bogie for Urban Railway Vehicles (도시형 전동차용 능동조향대차의 개념설계)

  • Park, Joon-Hyuk;Hur, Hyun-Moo;Koh, Hyo-In;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.709-716
    • /
    • 2007
  • An active steering bogie has been theoretically proved to improve both stability and steering performance remarkably. However, It has not been commercialized yet even though many researchers have been trying to develop it because some technical difficulties still exist such as information acquisition fer active control, increasing mechanical components, high energy consumption, fail-safe problem and so on. To solve those problems, an advanced active steering mechanism is proposed in this paper. With this mechanism, required control force is small enough to use direct drives. Therefore, the number of additional mechanical components can be minimized since mechanical transducers like gears are not necessary. Fail-safe function can be also inserted easily. In this paper, concept design of the proposed active steering bogie is introduced and the possibility is verified through computer simulation using linear dynamic model.