• Title/Summary/Keyword: 전도성 섬유

Search Result 182, Processing Time 0.025 seconds

Performance of Serial Communication Protocols through Conducting Threads (전도성사를 매체로 한 직렬 통신 프로토콜 성능)

  • Kim, Na-Young;Kim, Hwan;Kim, Juk-Young;Kwon, Young-Mi
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.21-28
    • /
    • 2011
  • Recently medical and entertainment applications using conducting textile are suggested, but the data of conducting threads are not characterized, classified and verified. Only the data sheet published by manufacturing companies is available. Thus we need to verify the performances of the threading threads in communication. And we need a guideline if the existing communication protocols can be used for the conducting threads communication or the new specific communication protocols have to be developed for the communication. This paper classifies the characteristics of conducting threads made by domestic and overseas companies. Based on the criteria we classified conducting threads into three classes: class A, class B and class C. Further we carried out experiments to verify the adaptability of existing simple serial communication protocols such as RS232. Six different conducting threads are used in experiments and the length of each thread was 0.5m, 1m, 2m and 3m. The data transmission rate and error rate are collected and analyzed. RS485 is very prone to error due to static electricity from human and environment. So it may not be appropriate as long-distance communication protocol up to 12km which is possible in theory. RS232 shows stable and error-less data transmission ability even though every conducting thread didn’t show transmission capability over RS232. USB protocol shows high data rate transmission but the distance cannot be exceeded over 2m. Additionally, USB requires stable power supply. But if the power is supplied through conducting thread, its function is not.

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

A Study on Plantar Electrocardiogram Measurement Using a Conductive Textile (전도성 섬유를 이용한 발바닥 심전도 측정에 관한 연구)

  • Yoo, Soo-Han;Lee, Yoo-Jung;Im, Do Hwi;Jung, Hwa-Yung;Wang, Changwon;Min, Se Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.887-889
    • /
    • 2016
  • 본 연구는 전도성 섬유를 양말에 부착하여 발바닥에서 심전도(ECG, Electrocardiogram) 신호를 검출하였다. 발바닥에서 측정한 심전도 신호와 손목에서 측정한 심전도 신호에 Pan-Tompkins algorithm을 적용하였고 R-R interval을 검출하였다. 이후 발바닥과 손목에서 측정된 심전도의 유의성을 검출하기 위해 비모수 검정법인 Spearman검정을 사용하여 상관분석을 수행하였다. 상관분석 결과, 유의확률 p=0.00에서 correlation coefficient=0.901로 두 데이터는 강한 양의 선형 관계에 있는 것으로 나타났다.

Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields : Effect of CF Sizing Treatment (고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향)

  • 고현협;김중현;임순호;김준경;최철림
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.293-301
    • /
    • 2001
  • Electrically conductive carbon fiber/high density polyethylene (CF/HDPE) composite films were fabricated by new method, so called electron-ion technology (EIT) and the effects of CF epoxy sizing on the volumetric resistivity. tensile strength and interphase properties of the films were investigated. While epoxy sizing increased conductivity of composite films resulting from enhanced tunneling effect it reduced interphase adhesion between CF and HDPE because polar epoxy sizing and nonpolar HDPE are incompatible. Consequently epoxy sized CF(CF(S)) caused significant reduction in the volumetric resisitivity and tensile strength of composite films when compared with unsized CF(CF(U)). Epoxy sizing reduced nucleating efficiency of CF(S), therefore CF(S)/HDPE composite films showed nonuniform transcrystalline layer when compared with CF(U)/HDPE composite films.

  • PDF

Bonding Technologies for Chip to Textile Interconnection (칩-섬유 배선을 위한 본딩 기술)

  • Kang, Min-gyu;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • This paper reviews the recent development of electronic textile technology, mainly focusing on chip-textile bonding. Before the chip-textile bonding, a circuit on the textile should be prepared to supply the electrical power and signal to the chip mounted on the fabrics. Either embroidery with conductive yarn or screen-printing with the conductive paste can be applied to implement the circuit on the fabrics depending on the circuit density and resolution. Next, chip-textile bonding can be performed. There are two choices for chip-textile bonding: fixed connection methods such as soldering, ACF/NCA, embroidery, crimping, and secondly removable connection methods like a hook, magnet, zipper. Following the chip-textile bonding process, the chip on the textile is generally encapsulated using PDMS to ensure reliability like water-proof.