• 제목/요약/키워드: 전단보강철근비

Search Result 180, Processing Time 0.022 seconds

Static Experiment of Reinforced Concrete Frame Retrofitted with Steel Damper System (강재댐퍼시스템으로 내진보강된 철근콘크리트 골조의 정적가력실험)

  • Baek, Eun Rim;Lee, Sang Ho;Oh, Sang Hoon;Kim, Jae Bong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • 최근 전 세계적으로 지진의 발생 빈도가 증가하며 그 규모도 점차 커지는 경향을 보이고 있다. 대형지진의 발생 시 저층 구조물의 붕괴로 인한 인명 및 사회, 경제적 피해가 두드러짐에 따라 기존 저층 구조물의 내진보강기법에 관한 연구가 활발히 진행 중인 추세이다. 우리나라의 경우 강도증가형 내진보강공법이 주를 이루고 있어 다양한 내진보강기법의 개발 및 적용이 필요한 실정이다. 따라서 본 연구에서는 지진입력하중 저감형 내진보강기법으로서 강재댐퍼시스템을 제안하여 구조적 성능을 파악하고, 이를 적용한 보강 실험체와 비보강 실험체를 제작하여 정적가력실험을 통하여 그 성능을 비교하였다. 제안된 강재댐퍼시스템은 입력에너지를 소산시키는 내부의 슬릿형 댐퍼와 이를 지지하는 기둥 및 외부 프레임으로 구성되며, 내부 댐퍼는 먼저 항복하여 에너지를 소산시키기 위하여 지지기둥 및 프레임에 사용된 강재보다 강성 및 강도가 적게 계획되었다. 강재댐퍼의 성능실험 결과, 비교적 안정적 거동을 하며, 강성과 강도 및 에너지 흡수능력이 우수하게 나타났다. 보강 및 비보강 실험체의 골조는 기존 학교 건축물의 표준도면을 기준으로 하여 골조의 일부를 대상으로 60% 축소율을 적용하여 계획하였으며, 보강 실험체는 미리 제작된 강재댐퍼시스템을 골조 내에 설치하여 에폭시 주입법으로 부착시공 하였다. 보강 및 비보강 골조 실험체의 정적가력 실험결과 비보강 실험체는 기둥의 휨 항복 후 변형의 증가에 따라 휨 및 전단 균열이 증가하면서 최종적으로 기둥이 전단파괴 되었으며, 보강 실험체는 비보강 실험체에 비하여 기둥 및 보의 균열이 적고, 골조에 골고루 분포되어 파괴 규모가 감소하였다. 최대 강도면에서 보강 실험체는 비보강 실험체에 비하여 약 3.4배 우수하였으며, 초기강성은 약 7배 가량 유리한 것으로 평가되어 제안된 강재댐퍼시스템이 강도면에서 우수한 성능을 나타냄을 알 수 있었다. 또한 두 실험체의 기둥 주근 및 띠철근의 변형률을 비교한 결과, 비보강 실험체는 대부분의 철근이 항복하여 큰 변형을 일으킨 반면, 보강실험체에서는 철근의 항복현상이 나타나지 않았고 댐퍼가 항복을 하면서 큰 변형을 일으켰다. 이를 통해 지진하중 입력 시 댐퍼에서 입력 에너지를 흡수하여 큰 하중을 부담하며, 기존의 구조부재에는 입력 에너지가 낮아 손상이 보다 적게 발생함을 확인하였다.

  • PDF

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

Experimental Study about Flexural Strengthening Effects According to evelopment Method of Carbon Fiber Sheet for Reinforced Concrete Beam (탄소섬유시트의 단부정착방법에 따른 철근콘크리트보의 휨 보강 효과에 대한 실험적 연구)

  • Won, Chi-Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This paper presents the results of a test program for flexural strengthening characteristics of continuous unidirectional carbon-fiber sheets bonded or/and developed to reinforced concrete (RC) beams. A total of six $150mm{\times}250mm{\times}2000mm$ concrete beams were tested. Various sheet development locations were studied to determine their effects on the ultimate flexural strength of the beams. From the test, it was found that the strength increases remarkably with the development of sheets at shear bar. Among the various location, multi-developed sheet provided the most effective strengthening for concrete beam. Beam strengthened using this scheme showed 53% increase in flexural capacity as compared to the control beam without any strengthening.

Flexural and Shear Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 휨 및 전단 거동)

  • Park Tae-Hyo;Park Jae-Min;Kim Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.401-409
    • /
    • 2005
  • In this study, reinforced dual concrete beam (RDC beam) composed of steel fiber reinforced concrete (SFRC) in the tension part and normal strength concrete (NSC) in the compression and remaining part is proposed. It is the epochal structural system that improves the overall structural performances of beam by partially superseding the steel fiber reinforced concrete in the lower tension part of conventional reinforced concrete beam (RC beam). Flexural and shear tests are performed to prove the structural excellence of RDC beam in comparison with RC beam. An analytical method is proposed to understand the flexrual behavior and is compared to experimental results. And for shear behavior, experimental results are compared to empirical equations predicting the ultimate shear strength of full-depth fiber reinforced concrete beam to examine the behavior of RDC beam under shear. From this studies, it is proved that RDC beam has more superior structural performance than RC beam, and the analytical method for flexural behavior agrees well with experimental results, and the partial-depth fiber reinforcements have no noticeable effect on ultimate shear strength but it is considerably effective to control and prevent evolutions of crack.

Concrete Shear Strength of FRP Reinforced Concrete Beam (FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도)

  • Cho, Jae Min;Jang, Hee Suk;Kim, Myung Sik;Kim, Chung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.259-266
    • /
    • 2009
  • This study is to develop equations that consider the elastic modulus ratio of FRP bar and steel reinforcement, shear span to depth ratio, and flexural reinforcement ratio of FRP bar, to determine concrete shear strength of FRP reinforced concrete beams without shear reinforcement. As experimental parameters, 2 types of FRP bar, 3 types of shear span to depth ratio, and 3 types of flexural reinforcement were used. Experimental results for two of shear span to depth ratio were quoted from previous study to evaluate effect of shear span to depth ratio in more detail. Shear strength correction factors needed for evaluating concrete shear strength were proposed from regression analysis using above experimental results. Equations suggested from this study and other codes were examined and compared with 31 experimental results available in the literature. From this comparison, it could be known that the equation suggested from this study gives the most approaching result to experimental results.

Static Shear Strength of Cast-in Anchors with Stirrup Reinforcement (스터럽 보강 선설치 앵커의 정적 전단하중에 대한 저항 강도)

  • Park, Yong Myung;Jo, Sung Hoon;Kim, Tae Hyung;Kang, Choong Hyun;Kim, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • An experimental study was conducted to evaluate the static shear strength of stirrup-reinforced cast-in anchors. The test parameters considered herein are an existence of front bearing bar and concrete crack. M36 anchor was used with an edge distance of 180mm. HD-10 bars were used for all reinforcing bars and the stirrups were placed with 100mm spacing. The shear resistance increased by 16% when the front bearing bar was installed. Meanwhile, the resistance reduced only 5% in the cracked concrete compared with the uncracked concrete. The test results showed that ACI 318 and ETAG 001 specifications could estimate the shear strength of stirrup-reinforced anchors conservatively and a rational method was proposed. A consideration on the fracture strength of stirrup-reinforced anchor is also given.

An Experimental Study of Shear Capacity for One-way Concrete Slabs Reinforced with Amorphous Micro Steel Fibers (비정질 강섬유 보강 일방향 콘크리트 슬래브의 전단성능에 대한 실험적 연구)

  • Kim, Seon-Du;Choi, Kyoung-Kyu;Choi, Oan-Chul;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In this study, one-way shear tests were performed to investigate the shear capacity of amorphous steel fiber-reinforced concrete slabs. Primary test parameters were the shear reinforcing method(Stirrups or amorphous steel fibers) and shear reinforcement ratio(0.25 and 0.5%). A series of four one-way slab specimens including a specimen without shear reinforcement and three specimens with shear reinforcements(stirrup, 0.25%, and 0.5% amorphous steel fibers) were tested. The test results showed that 0.25% amorphous steel fibers improved the shear capacity, but 0.5% amorphous steel fibers did not improve the shear capacity compared to the specimen with conventional shear reinforcement of 0.25%. Additional study is needed to understand the variation of shear capacity according to fiber volume fraction.

Shear Behavior of Reinforced Concrete Beams Strengthened with Unbonded-Type Wire Rope Units (비 부착형 와이어로프로 보강된 철근콘크리트 보의 전단 거동)

  • Kim, Sun-Young;Byun, Hang-Yong;Sim, Jae-Il;Chung, Heon-Soo;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • The present study reports a simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units. Fifteen beams failed in shear were repaired and strengthened with wire rope units, and then retested to failure. Influence of the prestressing force, orientation and spacing of wire rope units on the shear behavior of strengthened beams having shear span-to-depth ratios of 1.5, 2.5, or 3.25 were investigated. Test results showed that beams strengthened with wire rope units exhibited a higher shear strength and a larger post-failure deformation than the corresponding original beams. Inclined wire rope units was more effective for shear strength enhancement than vertical wire rope units. The increase of the prestressing force in wire rope units causes the decrease of the principal tensile stress in concrete, as a result, the diagonal tensile cracking strength of strengthened beams was higher than that of the corresponding original beams. Shear capacity of strengthened beams is compared with predictions obtained from ACI 318-05 and EC 2. Shear capacity of strengthened beams having shear span-to-depth ratio below 2.5 is reasonably predicted using ACI 318-05 formula. On the other hand, EC 2 overestimates the shear transfer capacity of wire rope units for beams having shear span-to-depth ratio above 2.5.

Shear Strengthening Effect on Reinforced Concrete Beams Strengthened by Vertical Slit Type Steel Plates (수직 Slit형(形) 강판으로 전단보강된 철근콘트리트 보의 전단보강효과)

  • Lee, Choon-Ho;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.195-204
    • /
    • 2009
  • Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. While the existing method applying solid steel plates provides good shear rigidity, however, it is concerned by brittle bond failure patterns, inefficient material usage, and low constructability. The use of strap type steel plates has also shortcomings of low strenthening effect due to small interface bonding area and ununified behavior between plates and main body. Therefore, this study aims to introduce the shear strengthening method using slit type steel plate, which can solve out the problems aforementioned, and to verify its strengthening effects on shear capacity. A total of 13 specimens strengthened by slit type steel plates were fabricated with primary test parameters of plate width, slit spacing, and plate thickness. The test results from this study were also compared to those from the existing research on RC beams strengthened by strap type steel plates, and the strengthening effects on shear capacity of specimens having bonded slit type steel plates were quantitatively analyzed. The test results showed that the RC beams strengthened by slit type steel plates had greater shear capacities than those with strap type steel plates, which is considered to be the effects of improved composite behavior and larger interface bonding area in the RC beams strengthened by the slit type steel plates.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.