• Title/Summary/Keyword: 전단변수

Search Result 911, Processing Time 0.03 seconds

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

Analysis of Groundwater Flow into Underground Storage Caverns by Using a Boundary Element Model (경계요소모형을 이용한 지하 저장공동의 지하수 유입량 분석)

  • Chung, Il-Moon;Lee, Jeong-Woo;Cho, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.537-544
    • /
    • 2005
  • For the proper management of high pressurized gas storage caverns, analysis of groundwater flow field and inflow quantity according to the groundwater head, gas storage pressure and water curtain head should be performed. The finite element method has been widely used for the groundwater flow analysis surrounding underground storage cavern because it can reflect the exact shape of cavern. But the various simulations according to the change of design factors such as the width of water curtain, shape of cavern etc. are not easy when elements were set up. To overcome these limitations, two dimensional groundwater flow model is established based on the boundary element method which compute the unknown variable by using only the boundary shape and condition. For the exact computation of drainage rate into cavern, the model test is performed by using the exact solution and pre-developed finite element model. The test result shows that the model could be used as an alternative to finite element model when various flow simulations are needed to determine the optimizing cavern shape and arrangement of water curtain holes and so forth.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Texture Transformations and Its Role on the Yield Strength of ($\alpha$+$\beta$) Heat Treated Zircaloy-4 (($\alpha$+$\beta$) 열처리된 지르칼로이-4에서 집합조직의 변화와 그 조직이 항복 강도에 미치는 영향)

  • Yoo, Jong-Sung;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1992
  • The texture changes and their effect on the 0.2% yield strength of Zircaloy-4 sheet were examined after quenched from the ($\alpha$+$\beta$) phase temperature. When the prior ($\alpha$+$\beta$) gram size was slightly larger than that of the $\alpha$-annealed, the observed texture was similar to the $\alpha$-annealed texture having an ideal orientation of the (0001) basal pole at 30$^{\circ}$away from the normal direction toward the transverse direction. When the prior ($\alpha$+$\beta$) grain size was twice as large as that of the $\alpha$-annealed, the location of maximum basal pole intensity was distributed between the transverse and the rolling direction making an angle 15$^{\circ}$from the normal direction, and the observed texture became isotropic. It was found that the Kearns texture parameter, fr, in the rolling direction increased steadily, and fr in the transverse direction increased slightly, while fr in the the normal direction decreased with increasing heat treatment time. With a small increase in fr, the 0.2% yield strength increased drastically. The influence of texture was analyzed by deriving the Schmid orientation factors and the resolved shear stresses for the deformation systems. It was found that the large increase in the 0.2% yield strength was attributed mainly to the microstructural changes and partly to the texture changes by the ($\alpha$+$\beta$) heat treatment.

  • PDF

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.