• Title/Summary/Keyword: 전기 기관차

Search Result 60, Processing Time 0.022 seconds

Energy Consumption of the Electric Vehicle and Internal Combustion Engine Vehicle for Different Driving Cases (주행 상황에 따른 전기차와 내연기관차의 에너지 소비 비교)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.8-13
    • /
    • 2020
  • In this paper, the electric vehicle (EV) and internal combustion engine vehicle (ICEV) are compared for different driving cases. The EV exhibits a lower powertrain efficiency when driven on the aggressive driving cycle than when driven on the moderate cycle. In particular, EV powertrain efficiency is low when the battery state of charge (SOC) is low, but ICEV efficiency increases when the driving cycle changes from the moderate cycle to the aggressive cycle. Based on these results, attempts can be made to increase EV powertrain efficiency. EV charging before the battery power drops to a low charging state can reduce energy consumption by 2.7% for an urban area. Furthermore, ECO driving has a more significant effect on EVs than on ICEVs.

Consideration of Noise Source Characteristics for Subway by Noise Measurement (운행 및 정지시 소음측정에 의한 전동차 소음원 특성 고찰)

  • Cho Jun-Ho;Jung Woo-Sung;Jung Jeong-Duck;Kim Myeong-Ryong;Kwon Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.622-626
    • /
    • 2003
  • 도시 중심가를 오가는 전동차의 경우 도시 사이를 운행하는 일반 기존선과는 다른 소음 특성을 가진다. 가장 두드러진 특징으로는 일반 기존선은 주로 디젤기관(디젤전기기관차 포함)에서 얻어지는 추진력을 이용하여 운행되나 도시철도에 사용되는 전동차의 경우는 그 추진력을 공급된 전기에너지에 의해 그 추진력을 얻는 것이다. 따라서 주요한 소음원의 특성도 상이하며, 또한 개활지를 중심으로 운행되는 기존선 열차에 반해 도시 전동차는 주로 터널내부에서 운행되고 있다. 따라서 본 연구에서는 도시 전동차의 소음원의 특성에 대해 측정 사례를 중심으로 나타내었다.

  • PDF

Deterioration Analysis of Electric Systems in Diesel Electric Locomotives (디젤전기기관차 전기장치 노후도 평가)

  • Kim, Jeong-Guk;Baek, Seung-Koo;Lee, Chang-Young;Kwon, Sung-Tae;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1213-1219
    • /
    • 2008
  • The deterioration analysis of electric systems in diesel electric locomotives, which were used for over 30 years, was performed to understand current wear and safety information. The electric systems include electric generation, traction motors, control units, high-voltage cables, and wires. In this investigation, various types of performance testing, such as insulation resistance measurement and degradation tests, were conducted to assess the degree of current deterioration. Moreover, an infrared camera was employed to verify abnormal heating in cables and wires. In this paper, the new techniques for evaluation of deterioration in electric systems have been introduced.

  • PDF

Comparative Study of Powertrain Loss and Efficiency for the Electric Vehicle and Internal Combustion Engine Vehicle (전기차와 내연기관차의 파워트레인 손실 및 효율 비교)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, the component loss models of the electric vehicle(EV) and the internal combustion engine vehicle(ICEV) are developed to analyze the losses and efficiencies of these two types of vehicles. The EV powertrain efficiency decreases as the vehicle velocity increases over most of the vehicle velocity range because the battery efficiency decreases. Especially, the EV powertrain efficiency decreases significantly when the battery SOC is low. But the ICEV powertrain efficiency increases as the vehicle velocity increases. This is because the efficiencies of both the transmission and engine increases.

Design and Implementation of Hydrogen Car Charging Station Application (수소차 충전소 애플리케이션 설계 및 구현)

  • Park, Heewan;Lee, Sang Hee;Jeong, Jini
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.731-732
    • /
    • 2022
  • 최근 탄소중립을 위한 친환경 자동차 권장 정책으로 인해서 전기차와 수소차 이용자가 증가하고 있다. 그러나 기존 내연기관차, 또는 전기차와 비교했을 때 수소차에 대한 인프라는 매우 부족한 현실이다. 따라서 출장이나 여행 등 기존 주거지를 벗어나는 상황에서는 수소차 충전소를 찾는데 어려움을 겪을 수 있다. 본 논문에서는 수소차 이용자들에게 편의를 제공하기 위해서 전국의 수소차 충전소의 위치를 구글 지도에서 보여주고 충전소의 사진과 전화번호를 쉽게 확인할 수 있는 애플리케이션을 설계 및 구현하였다.

  • PDF

Response Characteristic Analysis using Modeling of Propulsion System for 8200 Electric Locomotive (8200호대 전기기관차 추진시스템 모델링을 이용한 응답특성분석)

  • Jung, No-Geon;Chang, Chin-Young;Yun, Cha-Jung;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1640-1646
    • /
    • 2013
  • Conventional power conversion unit that is a major part of the propulsion system has applied GTO thyristor as a switching semiconductor device of main circuit since introduction of the 8200 electric locomotive. But problem that quick maintenance is difficult and its cost is increasing occurs because major components of the power conversion unit are slowly discontinued. To solve these, in this paper, it was analyzed the response characteristic of the propulsion system modeling of the 8200 electric locomotive using IGBT which is applied recently to ensure propulsion control technology. As results of response for a Propulsion system modeling, it show that a power conversion unit is controlled by PLL(Phase-locked loop) and SVPWM(Space Voltage PWM) respectively.

A Study on Optimized PWM Strategy to Improve Output Voltage Quality of HEP System Boarded on 8200 Series Electric Locomotives (8200호대 전기기관차 객차전원공급장치(HEP)의 출력전압품질향상을 위한 최적화된 PWM 방법)

  • Lee, Eul-Jae;Lee, Jin-Kook;Youn, Cha-Joong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1628-1632
    • /
    • 2013
  • HEP(Head Electric Power) system, supplying 3-phase service power to the coach vehicles, is a kind of special auxiliary power equipment which is boarded on 8200 series electric locomotives in KORAIL. This equipment shares high voltage DC link with a main propulsion converter/inverter systems. It was difficult to use high frequency PWM technique so that GTO has been used as a power device same like the main power system. Due to low PWM frequency(300Hz) of HEP inverter, the output voltage has less power quality comparing to normal SIV(Static Inverter) system. In this paper, an optimal PWM strategy is presented for new IGBT type HEP inverter system. Several PWM techniques were investigated to improve output voltage quality under fixed lower filter inductance and not high PWM frequency. Finally PC simulations have been done to clarify its availability.

Life Cycle Cost Analysis of Auxiliary Power Unit Developments for 8200 Series Electric Locomotive Based on Reliability (8200호대 전기기관차 보조전원장치 개발품의 신뢰도 기반 수명주기비용 분석)

  • Lee, Kye-Seung;Kim, Wan-il;Chang, Yoon-Woo;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1523-1529
    • /
    • 2018
  • Electric vehicles that are currently in operation are being produced domestically. Therefore, there is no great difficulty in receiving or repairing the failed parts or in the overall repair. On the other hand, most of the electric locomotives are manufactured by introducing the parts and technology of foreign vehicle manufacturers. In this paper, conducted a study about life cycle cost analysis of developed auxiliary power unit in 8200 series electric locomotive and suggested cost down method. This confirms the economic benefits of the developed products of the auxiliary power supply compared to the existing products. In addition, a sensitivity analysis of MTBF was conducted to suggest a life cycle cost down method.

Calculation Method of Modification Factors for Fault Location Algorithm Using Boosting Current of Operating Electric Train in AT Feeding System (AT급전계통에서 실제 운행 중인 전기기관차 부하를 이용한 고장점 표정 알고리즘 보정계수 산출 방법)

  • Kim, Cheol-Hwan;Kim, Sung-Ryul;Kwon, Sung-Il;Cho, Gyu-Jung;Kim, Chul-Hwan;Song, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.504-510
    • /
    • 2016
  • In general, a fault locator is installed in Sub-Station of AT(Auto-transformer) feeding system to estimate the fault location and to protect the Korean AT feeding system. Since the line impedance characteristic is different to normal 3-phase transmission line, we need particular modification factors, which can be calculated using fault location recording data, to estimate the accurate fault location. Up to recently, forcible ground test has been used to calculate the modification factors of the fault locator. However, large amount of current is occurred when the forcible ground test is performed, and this current affects to adjacent equipments. Therefore, we proposed a novel calculation method of modification factors, arbitrary trip test, using boosting current of the operating electric train. Through several field test, we confirmed that modification factors for fault locator can be easily calculated by using proposed method. Moreover, we verified the accuracy and stability of the proposed calculation method.

A Study on Powering Characteristic on Speed Variation of Propulsion System of Prototype 8200 Electric Locomotive (축소형 8200호대 전기기관차 추진시스템의 속도변화에 따른 역행특성 연구)

  • Jung, No-Geon;Chang, Chin-Young;Yun, Cha-Jung;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1467-1472
    • /
    • 2014
  • This paper study on powering characteristic on speed variation of propulsion system of prototype 8200 electric locomotive propulsion system through simulation modeling. For this purpose, it being applied in the field of railway IGBT (Insulated Gate Bipolar Transistor) elements are used. Converter was performed PLL (Phase-Locked Loop) control method that is used to control the phase and output voltage, and the inverter was carried an indirect vector control method to control the speed of traction motor. The results of simulation by modeling and experimental unit, we was confirmed that converter is controlled a unity power factor and output voltage by reference voltage. Also traction motor was controlled by indirect vector control and SVPWM inverter switching method very well.