• Title/Summary/Keyword: 전기화학 반응

Search Result 1,328, Processing Time 0.029 seconds

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.

Alkyl & Aryl Transfer Reactions of Trialkylborane & Triarylborane in the Presence of Metal Alkoxide to the Carbonyl Compounds Using Various Sacrificial Anodes via Electrochemical Method (메탈 알콕사이드 존재 하에서 희생 양극을 이용한 트리알킬보란 및 트리아릴보란의 카르보닐화합물로의 알킬 및 아릴 이동 반응에 대한 전기화학적 방법)

  • 최정훈;최보성;염종성;백대진
    • 한국전기화학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.35-35
    • /
    • 1998
  • PDF

Solvent Effect in Nucleophilic Reactions of Substituted Benzoyl Chlorides with p-Nitroaniline (치환염 벤조일과 파라니트로아닐린과의 친핵반응에 미치는 용매효과에 관한 연구)

  • Kim, Wang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.251-258
    • /
    • 1974
  • The rate constants for the nucleophilic substitution reactions of substituted benzoyl chlorides with p-nitroaniline in such solvents as acetone, acetonitrile, methanol, ethanol, etc. were conductometrically determined, and the activation thermodynamic parameters were also evaluated. In result, the reaction rates were faster in protic solvents than in aprotic solvent; in the solvents of similar property, the reaction rate in the solvent of the large dielectric constant was faster than that in the solvent of the small dielectric constant. Hammett plots in individual solvents showed the straight lines with positive slope; and we concluded that the reaction occurred via the addition-elimination mechanism.

  • PDF

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Dehydropolymerization of Silanes to Polysilanes Catalyzed by Organometallic Complexes (유기금속 착물 촉매에 의한 실란의 탈수소중합 반응)

  • Woo, Hee Gweon;Song, Sun Jung
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.9
    • /
    • pp.502-517
    • /
    • 1997
  • This review deals with (1) the catalytic systems and mechanisms for the dehydropolymerization of silanes to polysilanes, (2) the dehydropolymerization of versatile silanes, (3) the preparation of polysilane derivatives, and (4) the applications of catalytic dehydropolymerizing systems to ceramics. The efforts to maximize the catalytic efficiency of group 4 metallocenes were introduced. Finally, the future of this dehydropolymerizing techniques of silanes was foreseen.

  • PDF

ECL properties for concentration of $H_2O_2$ and feature of electrodes (과산화수소 농도와 전극에 따른 전기화학발광 특성)

  • Pyo, Seong-Yeol;Kang, Moon-Sik;Kang, Chul-Goo;Kim, Hyung-Il;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1566-1568
    • /
    • 2002
  • 본 논문은 혈당, 콜레스테롤센서에 적용이 가능한 과산화수소($H_2O_2$) 검출방식인 전기화학발광(Electrochemiluminescence:ECL)법 사용에 필요한 전극특성에 관한 연구이다. 전기화학전극으로 Pt박막전극을 사용하였으며, luminol(5-amino-2, 3-dihydro-1, 4-phthala edione)과 과산화수소($H_2O_2$)의 반응으로 발생한 빛을 포토다이오드(photodiode)를 사용하여 전류를 측정하였다. 사용된 전극은 직사각형(rectangular-type), 교차형(interdigitated-type)의 두 가지 형태를 사용하여, 전극간의 거리와 면적에 따른 ECL특성을 측정하였다. ECL 발광 특성은 전극 면적이 증가함에 따라, 전극거리가 감소함에 따라 증가함을 관찰할 수 있었다.

  • PDF

First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis (전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링)

  • Mihyeon Cho;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.598-603
    • /
    • 2023
  • Electrochemical ammonia production using catalysts offers a promising alternative to the conventional Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations, and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000) surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction pathways required for the final desorption of NH3.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Influence of Charging Condition of Al-dross on Maximum Concentration of Al in Molten Steel : Fundamental study for improvement of chemical energy in EAF process (용강 중 Al 최대 농도에 대한 Al 드로스 장입 조건의 영향: 전기로 공정 내 화학 에너지 향상을 위한 기반 연구)

  • Kim, Gyu-Wan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.44-50
    • /
    • 2019
  • In the electric arc furnace process, the chemical energy such as the heat of oxidation reaction and the heat of carbon combustion etc. is consumed as 30% of the total input energy. In order to reduce $CO_2$ emission in EAF, it is necessary to decrease the use of electric power energy during scrap melting stage and increase the use of chemical energy. In general, when the carbon materials is individually charged into the molten steel, the carbon materials floated to the slag layer due to low density before it is dissolved in molten steel. When the concentration of carbon in the molten steel is high, the combustion energy of carbon by oxygen injection can lower the electric power energy and improve the chemical energy consumption. Therefore, an efficient charging methods of carbon material is required to increase the efficiency of carbon combustion heat. On the other hand, Al-dross, which is known as a by-product after Al smelting, includes over 25 mass% of metallic Al, and the oxidation heats of Al is lager than that of carbon. However, the recycling ratio fo Al-dross was very low and is almost landfilled. In order to effectively utilize the heats of oxidation of Al in Al-dross, it is necessary to study the application of Al-dross in the steel process. In this study, the dissolution efficiency of carbon and aluminum in molten steel was investigated by varying the reaction temperature and the mixing ratios of coke and Al-dross.