• Title/Summary/Keyword: 전기화학적 환원

Search Result 488, Processing Time 0.033 seconds

Selective Electrochemical Reduction on the Imino Group of ${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate (${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate 의 Imino 기에 대한 선택적 전해환원반응)

  • Kim, Il-Kwang;Kim, Youn-Geun;Lee, Young-Haeng;Chai, Kyu-Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.614-622
    • /
    • 1989
  • The electrochemical reduction of ${\alpha},{\beta}$-dibenzyl N-benzylidene L-aspartate in 0.1M LiCl ethanol solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry and controlled potential coulometry(CPC). The irreversible reductive amination of imino group proceeded to form ${\alpha},{\beta}$-dibenyl N-benzyl L-aspartate by CEC or CE electrochemical reaction mechanism at the first reduction step (-0.92 volts vs. Ag-AgCl). The polarographic reduction wave was slightly suppressed due to inhibitory effect of micelle, while the irreversibility was increased according to the increase of Triton X-100 concentration. Upon the basis of product analysis and polarogram interpretation with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

Cathodic Polarization Measurements on La0.9Sr0.1MnO3 Electrode for Solid Oxide Fuel Cells

  • Lee, H.Y.;Oh, S.M.
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Cathodic oxygen reduction kinetics on $La_{0.9}Sr_{0.1}MnO_3$ electrode have been examined at $700-900^{\circ}C$ under various oxygen partial pressures. AC impedance and current interruption techniques were employed for the determination of charge transfer resistances for electrochemical oxygen reduction. The $R_{ct}$ values obtained from two different methods were very close each other for $La_{0.9}Sr_{0.1}MnO_3$ electrode. Activation energy for the electrochemical oxygen reduction was found to be 174kJ/mol under atmospheric oxygen pressure. $R_{ct}$ measurements as a function of oxygen partial pressure indicate that the rate-determining step for the electrochemical oxygen reduction on $La_{0.9}Sr_{0.1}MnO_3$ electrode is the charge transfer process.

  • PDF

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential (전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석)

  • Roh, Kosan
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.

Synthesis and Electrochemical Behavior of Rare Earths Metal Complexes (희토류금속 착물의 합성과 전기화학적 거동 (제 2 보))

  • Choe, Chil Nam;Jeong, O Jin;Yun, Seok Jin;Kim, Jun Tae
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.280-287
    • /
    • 1990
  • The electrochemical behavir of trivalent lanthanides [Sm(Ⅲ), Tb(Ⅲ), and Yb(Ⅲ)) complexes were investigated by the use of direct current, differential pulse polarography and cyclic voltammetry in aprotic media. These reduction peak were irreversible one-electron processes at $E_{pc}$ = -0.16 V, -0.35 V, -0.14 V, and -0.03 V of trivalent lanthanide complexes vs. Ag/AgCl electrode and the behavior of heavier lanthanides were decreased Sm > Tb > Ho > Yb order of the stability constant with decreasing atomic number.

  • PDF

Electrochemical Behaviors for Cathodic Reaction of N'-aryl-N-alkyl-N-nitrosourea Drivatives (N'-aryl-N-alkyl-N-nitrosourea 유도체의 환원반응에 대한 전기화학적 거동)

  • Won, Mi Sook;Kim, Jack C.;Jeong, Euh Duck;Shim, Yoon-Bo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.842-847
    • /
    • 1995
  • The electrochemical reduction reactions of N '-aryl-N-alkyl-N-nitrosourea derivatives with a glassy carbon electrode were diffusion controlled and irreversible. The exchange kinetic constant ko values for reduction reaction of the N '-aryl-N-alkyl-N-nitrosoureas were at the range of $1.48{\times}10^{-6}{\sim}5.32{\times}10^{-7}\;cm/sec.$ The $k_0$ values for phenyl substituted on the aryl position were about 1.3∼2.8 times higher than that of other substituents. The same substituent for aryl groups on the both of N '-aryl-N-alkyl-N-nitrosourea and N '-aryl-N-(2-chloroethyl)-N-nitrosourea exhibited same value. The $E_p$ value was shifted to the negative direction as pH increased. The number of protons participated to the reduction was 4∼5, respectively. The substituent effect of aryl group on the reduction potential was not observed in this case.

  • PDF

Synthesis of Pd Dendritic Nanowires for Methanol Electrooxidation (전기도금을 이용한 팔라듐 나노와이어 합성 및 전기화학 촉매 특성 연구)

  • Song, You-Jung;Han, Sang-Beom;Lee, Jong-Min;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.395-398
    • /
    • 2009
  • 전기도금 방법을 사용해 각기 다른 환원 전압과 전기도금시간에서 Pd 수지상 나노와이어(Pd DNWs) 전극이 합성 되었으며 그 성장 기작을 논의하였다. 전기화학적인 도금 공정 동안 Pd DNWs 이<111>방향으로 성장하는 것을 확인할 수 있었는데, 이것은 전해질 속의 황산음이온들이 Pd 의 (111)면에 흡착하기 유리하기 때문이라고 사료된다. 가해준 환원전압이 증가함에 따라, 단 결정 수지상의 나노와이어의 가지는 길어지고 얇아지는 경향을 보였다. 이것은 전기도금 시간이 아니라 환원전압에 의해서만 나노와이어 가지의 직경이 조절됨을 보여준다

  • PDF

Basic Studies on the Recovery of Zinc Metal from Wastewater by Cyclic Voltammetry (循環走査법에 의한 廢水로부터 亞鉛 回收에 관한 基礎 硏究)

  • 김진화;김동수
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Cyclic voltammetry has been applied in the basic studies for the treatment and recovery of heavy metal component contained in wastewater by electrochemical reduction. The electrochemical behaviors of zinc ion for zinc metal electrode and carbon elec-trode were characterized by voltammograms and it was showed that zinc ions were reduced to metallic form below -0.76 V vs SHE. The change in the features of crystalline form of metallic zinc upon oxidation and reduction reaction was observed by X-ray diffraction method and the Am analysis verified that zinc ions were reduced to metal on copper plate. The results of this study were regarded to be important and meaningful in the treatment of heavy metal containing wastewater and, as a result, in the obtainment of metallic product by electrochemical method.

  • PDF

Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition (상온 상압 조건에서 전기화학적 질소환원반응을 통한 암모니아 생산 연구 동향)

  • Lee, Dong-Kyu;Sim, Uk
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally, ammonia has been produced through the Haber-Bosch process, in which atmospheric nitrogen combines with hydrogen at high temperature ($350-550^{\circ}C$) and high pressure (150-300 bar). This process consumes 1-2% of current global energy production and relies on fossil fuels as an energy source. Reducing the energy input required for this process will reduce $CO_2$ emissions and the corresponding environmental impact. For this reason, developing electrochemical ammonia-production methods under ambient temperature and pressure conditions should significantly reduce the energy input required to produce ammonia. In this review, we introduce the electrochemical nitrogen reduction reaction at ambient condition. Numerical studies on the electrochemical nitrogen reduction mechanism have been carried out through the computation of density function theory. Electrodes such as nanowires and porous electrodes have been also actively studied for further participation in electrochemical reactions.

An Electrochemical Reduction of TiO2 Pellet in Molten Calcium Chloride (CaCl2 용융염에서 TiO2 펠렛의 전기화학적 환원반응 특성)

  • Ji, Hyun-Sub;Ryu, Hyo-Yeol;Jeong, Ha-Myung;Jeong, Kwang-Ho;Jeong, Sang-Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • A porous $TiO_2$ pellet was electrochemically converted to the metallic titanium by using a $CaCl_2$ molten salt system at $850^{\circ}C$. Ni-$TiO_2$ and graphite electrodes were used as cathode and anode, respectively. The electrochemical behaviour of $TiO_2$ pellet was determined by a constant voltage control electrolysis. Various reaction intermediates such as $CaTiO_3$, $Ti_2O$ and $Ti_6O$ were observed by XRD analysis during electrolysis of the pellet. Once $TiO_2$ pellet was converted to a porous metallic structure, the porous structure disappeared by sintering and shrinking with increasing the reaction time at high temperature.