• Title/Summary/Keyword: 전기탐사

Search Result 731, Processing Time 0.026 seconds

A Study on the Construction Method of the Songsanri Tombs Using Geophysical Exploration Method (송산리 고분군의 지구물리학적 조사를 통한 고분축조방법 고찰)

  • Suh, Mancheol;Lee, Changwhan;Jeong, Gyeok;Kim, Donghyun
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.61-70
    • /
    • 1997
  • An integrated geophysical survey was conducted to study a construction method of the Sonsanri tombs including the Muryong royal tomb. With the distribution of soil resistivity and self potential values, the boundary between original ground and the construction site was delineated clearly. The original ground has relatively high resistivity of $1,000\~1,500$ ohm-m and low self-potential values of $0{\pm}3mV/m$, while the construction site has low resistivity less than 200 ohm-m and quite high self-potential values of $-20\~30mV/m$. It is interpreted that the open site for construction of subsurface tomb has the size of about 35 m in the north-south direction. Big difference in characteristics of ground between the tomb site and the original site gives a clue for the construction method of tombs in Baekje dynasty. The site was opened about 35 meters in the north-south direction and then a mold structure was constructed with a brick frame outside. The brick frame consists of bricks cemented each other and structually combined. The mold structure was removed from inside after refill of the opened construction site with some cemented rock debris and soil.

  • PDF

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Proper Monitoring Methods for Safety Management of Tailings Dam (광물찌꺼기적치장의 안전관리를 위한 적정 모니터링 방안 연구)

  • Jung, Myung Chae;Kim, Jeong Wook;Hwang, In-ho;Yang, In Jae;Park, Jay Hyun;Park, Ju Hyun;Kim, Tae Youp
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.576-587
    • /
    • 2018
  • This study has focused on analysis factors affecting safety monitoring system at tailings sites, and the evaluation equipment to monitor the factors. Twenty sites at eighteen mines with unsafe conditions were selected to examine the equipment. There were three main factors influenced safety in the sites including surface erosion, piping, and slope instability. In detail, the surface erosion was divided into three sub-factors (planting, soil-topping layer, and tailings), piping into three sub-factors (liner, rain protection facility and leachate), and slop instability was also divided into three sub-factors (slop, concrete wall, and reinforcing wall). As results of in-field measurement, a CCTV was the most effective facility, and electrical resistivity survey, acoustic sensing, thermal liner sensor, structure inclinometer, rainfall meter, and flowmeter were also highly effective. According to applications of the facilities in the unstable tailings, structural defects were mainly found in the piping, which was the most important monitoring factor for safety management of tailings sites.

Quantitative preliminary hazard level simulation for tunnel design based on the KICT tunnel collapse hazard index (KTH-index) (터널 붕괴 위험도 지수(KTH-index)에 기반한 터널 설계안의 정량적 사전 위험도 시뮬레이션)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Kim, Dong-Gyou;Bae, Gyu-Jin;Lee, Hong-Gyu;Shin, Young-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.373-385
    • /
    • 2009
  • A new indexing methodology so called KTH-index was developed to quantitatively evaluate a potential level for tunnel collapse hazard, which has been successfully applied to tunnel construction sites to date. In this study, an attempt is made to apply this methodology for validating an outcome of tunnel design by checking the variation of KTH-index along longitudinal tunnel section. In this KTH-index simulation, it is the most important to determine the input factors reasonably. The design factor and construction condition are set up based on the designed outcome. Uncertain ground conditions are arranged based on borehole test and electro-resistivity survey data. Two scenarios for ground conditions, best and worst scenarios, are set up. From this simulation, it is shown that this methodology could be successfully applied for providing quantitative validity of a tunnel design and also potential hazard factors which should be carefully monitored in construction stage. The hazard factors would affect sensitively the hazard level of the tunnel site under consideration.

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Poststructural Curriculum and Topic-centered Framework of The New Science Curriculum (후기 구조주의 교육과정과 새 과학과 교육과정의 주제 중심 내용 구성)

  • Kwak, Young-Sun;Lee, Yang-Rak
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.169-178
    • /
    • 2007
  • In this research we diagnosed the actual status of the 7th National science elective curriculum and suggested a way to select and organize the content of the new science elective curriculum. The first science education reform was grounded in the structuralism where the structure of discipline was valued above everything else. On the other hand, the second science education reform suggested alternative interpretations of students' opportunity to learn, putting a brake on the structuralist thinking. According to the survey result, the majority of the science elective courses are in need for revision because the contents are overcrowded, too difficult in light of students' learning readiness, failed to draw students' interest in science, and are overlapped and repeated among the 10th grade science, high school science I and II. In particular, Earth Science II and physics II are the most unfavorable courses among students. Thus, we recommended a fundamental change be made in the new curriculum in addition to the optimization of the content. In this paper, we suggested 'topic-centered content organization' for the science elective course I, i.e., Physics I, Chemistry I, Biology I and Earth Science I that is designed for both science track and non-science track students. Since curriculum provides students with an 'opportunity to learn', a curriculum study should focus on what the 'opportunity to learn' is that students ought to be offered. Based on the result of this study, we recommended one way to select and organize the content of high school elective curriculum.

Origin of Sandstone Fragments Within Core Sediments Obtained from Southwestern Continental Shelf of the Ulleung Basin, East Sea (동해 울릉분지 남서부 대륙붕에서 채취된 시추퇴적물내 사암편의 기원)

  • Lee, Eui-Hyeong;Lee, Yong-Kuk;Shin, Dong-Hyeok;Huh, Sik;Kim, Seong-Ryul;Jeong, Baek-Hoon;Han, Sang-Joon;Chun, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.126-134
    • /
    • 2001
  • Several angular sandstone fragments (about 7 cm in longest diameter) occur in two piston cores, obtained from the submarine trough in the northeastern part of Korea Strait. The origin of the sandstone fragments and the paleoenvironment of trough sediment could be suggested from sedimentary facies analysis of cores and identification of ostracod within sandstone fragments. Echo characteristics around two core sites in submarine trough represent the prolonged bottom echoes with diffuse or no subbottom reflectors. The cores consist of a lower bioturbated mud and an upper gravelly sand sediments with sandstone/shell fragments. The bioturbated mud sediments show low water contents (27-44%) and high shear strength (19.2->37 kPa) compared with those of Holocene sediments (60-219% and 1.0-2.7 kPa, respectively) in the inner shelf and continental slope. However, clay contents (48-56%) of the bioturbated mud sediments are similar to those of fluviatile Holocene sediments in the inner shelf. The mean grain size of gravelly sand sediments ranges from 2.3 to 3.0 ${\phi}$ and shows coarsening upward with sandstone/shell fragments. The Holocene palimpsest in the continental shelf are composed of muddy sand sediments or sandy mud sediments (mean grain size: 4.6-7.6 ${\phi}$). Those suggest that two core sediments might be formed from Paleofluvial and paleocoastal deposits during sea-level lowstand. However, sandstone fragments mainly consist of quartz grains and bioclasts, with carbonate matrix, hollow pore, and glauconite. Two extinct ostracod species, Normanicythere sp. and Kotoracythere sp., are recovered in the sand-stone fragments of core EP-7, and they continued to exist from late Pliocene to early Pleistocene in cold water environment of this area. Thus, the sandstone fragments are interpreted to be formed at the paleocoastal environment derived from the Plio-Pleistocene outcrops exposed around the submarine trough during the LGM (Last Glacial Maximum) period.

  • PDF

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.

The Main Contents, Comment and Future Task for the Space Laws in Korea (한국에 있어 우주법의 주요내용, 논평과 장래의 과제)

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.1
    • /
    • pp.119-152
    • /
    • 2009
  • Korea now has a rapidly expanding and developing space programme with exploration aspirations. The government is giving priority to the aerospace industry and, to put it on a better footing, enacted an Aerospace Industry Development Promotion Act in I987, a Space Development Promotion Act in 2005 and a Space Compensation for Damage Act in 2007. I would like to describe briefly the legislative history, main contents and comment for these three space acts including especially launch licensing, registration of space objects, use of satellite information, astronaut rescue, liability for compensation, third party liability insurance and establishment of committee and plans to assist the Korean space effort. Furthermore author proposed to legislate a new draft for the establishment of a Korean Aerospace Development Agency (KADA: tentative title) to create a similar body to Japan Aerospace Exploration Agency (JAXA), British National Space Centre (BNSC) of UK, French Centre National d'Etudes Spatiales (CNES), German Aerospace Center (DLR), Swedish Space Corporation (SSC), China Aerospace Science and Industry Corporation (CASIC), Indian Space Research Organization (ISRO) as well as the Korean Space Agency (KSA: Tentative title) to create a similar body to Canadian Space Agency, European Space Agency, Russian Space Agency, Italian Space Agency, Israel Space Agency, Indian Department of Space, National Aeronautics and Space Administration (NASA) of USA, China National Space Administration in order to develope efficiently space industry. If the Korean government will be establish the Korean Space Agency as an governmental organization in future, it is necessary to revise the contents of the Government Organization Act. It is desirable and necessary for us to establish an Asian Space Agency (ASA), in order to develop our space industry and to promote research cooperation among Asian countries, based on oriental idea and creative powers.

  • PDF