• Title/Summary/Keyword: 전기탐사

Search Result 731, Processing Time 0.026 seconds

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

A Study to Estimate the Seawater Leakage Zone of the Embankment using SP and Pole-pole Array Resistivity Survey (SP 및 단극배열 전기비저항탐사를 이용한 방조제 누수지점 탐지)

  • Song Sung-Ho;Lee Kyu-Sang;Kim Jin-Ho;Jang Eui-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.19-40
    • /
    • 2000
  • We applied both SP monitoring and pole-pole array resistivity surveys and SP survey and dipole-dipole array resistivity survey to leakage problems in several embankments and dike, respectively, to estimate and detect the zone of leakage. The embankment is generally affected by tidal variation and has low resistivity characteristics due to the high saturation of seawater. According to this situation, SP monitoring and resistivity survey using pole-pole electrode array, which is relatively more effective to the conductive media, were carried out to delineate the leakage zones of sea water through the embankment. We checked out electrical conductivity(EC) and temperature variations along the inner part of the embankment to detect the zone of seawater leakage and found that the measured EC value agreed to that of seawater in the leakage zone and the temperature was lower than that of the vicinity of leakage zone. SP monitoring results were coincide with tidal variations at each embankment. Based on the survey results, it is concluded that both SP monitoring and the pole-pole array resistivity method are quite effective for investigation of seawater leakage zones in the embankment.

  • PDF

Hydrogeologic Structure derived from Electrical and CSMT Surveys in the Chojung Area (전기 및 CSMT 탐사를 이용한 초정지역의 수리지질 구조 해석)

  • Song Sung-Ho;Yong Hwan-Ho;Kim Jin-Ho;Song Seung-Yup;Chung Hyung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2002
  • The hydrogeologic structure in the Chojung area was evaluated from a set of geological and geophysical investigations: detailed geological survey, vertical electric sounding (VES), borehole logging, and controlled-source magnetotelluric (CSMT) survey. Among these, CSMT soundings were taken for integrated interpretation to extend hydrogeologic structure with depth. The result of CSMT survey along with VES and borehole logging provides the vertical geologic boundary connected with hydrogeologic structure, and also indicates the depth of aquifer in granite basement. To interpret the geologic boundary and aquifer characteristics using CSMT data, we adopted the technique of 1-D inversion with smoothness-constrained method and 2-D continuous profiling with 1-D Bostick inversion and spatial filtering. The methodology tested and adopted in this study would be useful and required for providing a more information to the structure of fractured aquifer system.

지구물리탐사자료의 지리정보시스템 해석

  • Han, Su-Hyeong;Kim, Ji-Su;Sin, Jae-U;Gwon, Il-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • Geophysical data sets from the Chojeong area in the Chungbok-Do are compositely studied in terms of multi-attribute interpretations for the subsurface mappings of shallow fracture zones, associated with groundwater reservoir. Utilizing a GIS software, the attribute data were implemented to a database; a lineament from the satellite image, electrical resistivities and its standard deviation, radioactivity, seismic velocity, and bedrock depth. In an attempt to interpret 1-D electrical sounding data in 3-D views, 1-D data are firstly performed horizontal and vertical inter- and extrapolation. Reconstruction of a resistivity volume is found to be an effective scheme for subsurface mapping of shallow fracture zones. Shallow fracture zones are located in the southeastern part of the study area, which are commonly correlated with the various exploration data.

  • PDF

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

The Principles and Practice of Induced Polarization Method (유도분극 탐사의 원리 및 활용)

  • Kim, Bitnarae;Nam, Myung Jin;Jang, Hannuree;Jang, Hangilro;Son, Jeong-Sul;Kim, Hee Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.100-113
    • /
    • 2017
  • Induced polarization (IP) method is based on the measurement of a polarization effect known as overvoltage of the ground. IP techniques have been usually used to find mineral deposits, however, nowadays widely applied to hydrogeological investigations, surveys of groundwater pollution and foundation studies on construction sites. IP surveys can be classified by its source type, i.e., time-domain IP estimating chargeability, frequency-domain IP measuring frequency effect (FE), and complex resistivity (CR) and spectral IP (SIP) measuring complex resistivity. Recently, electromagnetic-based IP has been studied to avoid the requirement for spike electrodes to be placed in the ground. In order to understand IP methods in this study, we: 1) classify IP surveys by source type and measured data and illustrate their basic theories, 2) describe historical development of each IP forward modeling and inversion algorithm, and finally 3) introduce various case studies of IP measurements.

A Geophysical Study on Site Characteristics of the Western Pagoda of the Mireuksa Site, Iksan, Korea (익산미륵사지 지반특성에 대한 지구물리학적 연구)

  • Je-Ra-
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • A number of tangible cultural properties have been left to suffering damage without any scientific conservation or maintenance. We conducted nondestructive geophysical explorations around the Western pagoda of the Iksan Mireuksa Temple for the purpose of preparing the counterplan of its conservation and maintenance and of utilizing the geophysical information for the design of repair. Geophysical image of the shallow subsurface around the construct resulting from electric resistivity, seismic refraction, and GPR methods carried out along 6 lines in the site was used to investigate the relationship between the foundation characteristics and the structural safety. Tilting of the pagoda southwest towards seems to result from the low resistivity zones found in the southwestern part. The GPR and seismic surveys revealed a boundary at depth of 3.3~3.5m dividing into two layers, compacted overlaid soil and the original ground. The boundary appears to dip southwest. The artificial layer as a foundation does not covers as much as the bottom area of the pagoda. This top soil dipping southwest seems to result in tilting of foundation southwestward towards. Our geophysical result suggests ground reinforcement in the western part of the survey area for the conservation of the construct.

  • PDF

Ground investigation using Complex Resistivity Method (복소전기비저항법을 이용한 지반조사)

  • Son, Jeong-Sul;Kim, Jung-Ho;Park, Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.119-124
    • /
    • 2008
  • Due to the recent development of instruments which enabled the measurements of subtle IP effect in the ground and analysis algorithms, complex resistivity (CR) method was expanding its application to various field. In this study, we applied the CR method to the test site where the ground reinforcement had been done by injecting the cement mortar for investigating the effect of ground reinforcement. For this site, resistivity monitoring and tomography survey was carried out while the ground reinforcement had been made by the grouting. From the result, the anomalous region that was shown on the result of resistivity 4D monitoring was coincident with those of phase section in the CR method, because the cement grouting material had the strong IP effects. It might be expected that the CR method should be very powerful surveying tool for the similar purpose.

  • PDF

Estimation of Two-dimensional Distribution of Coefficient of Permeability from Electrical Logging and AMT Data in Yangsan Area (전기검층과 AMT 탐사자료를 이용한 양산지역의 2차원 투수계수분포 산출)

  • Lee, Tae-Jong;Park, Nam-Yoon;Choo, Seok-Yeon;Lee, Jong-Ho;Koh, Sung-Yil
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new approach of estimating the coefficient of permeability (COP) from resistivity has been developed, which can provide another good application tool of geophysical methods to geo-technical field. Borehole electrical logging and Lugeon test results in Yangsan area showed that resistivity is inversely proportional to the COP. For granite and andesite in Yansan area, the relation between the resistivity ($\rho$) and the COP (k) revealed that, $log(k){\approx}-0.85621\;log({\rho})+0.0031$. Derived relation is applied to AMT data acquired from a survey line along the tunnel. Two-dimensional resistivity distribution from AMT data was converted to two-dimensional COP section. The final COP section can be used as good input data for groundwater modeling.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.