• Title/Summary/Keyword: 전기주조

Search Result 75, Processing Time 0.021 seconds

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.

Effects of 3rd Element Addition on the Property Improvement of Al-Zr Conductor Wire (Al-0.24Zr 합금 도체의 물성향상에 미치는 제 3원소의 영향)

  • Park, Su-Dong;Hyun, Suk-Kyu;Kim, Byung-Geol;Kim, Bong-Seo;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1244-1247
    • /
    • 2004
  • 본 연구에서는 송전선용 내열 Al합금인 Al-Zr합금의 내열성과 도전율을 동시에 향상시키기 위해 제 3원소(Mm(misch metal), Ag, Be)를 첨가하고 이것에 의한 물성변화를 공정별로 추적분석 하였다. 본 연구에 의해 측정된 주요 물성은 공정에 따른 미세조직 변화와 경도 및 도전율 둥이 측정, 조사되었다. 연구결과, Mm첨가에 의해 주조조직은 미세화 되었으며 경도와 도전율은 향상되었다. Be첨가에 의해서는 급냉 후 주조조직이 조대화 하였고 주조상태에서 이미 60%IACS에 근접하는 우수한 도전율을 나타내었다. 또한 주조 후 열처리 과정에서 주조조직의 분해는 촉진되었으며 시효석출과정에서는 $Al_3Zr$상의 석출은 억제되었다. 그러나 Al-Zr합금에 대한 Ag의 첨가는 경도와 도전율 모두에서 큰 영향을 주지 않는 것으로 판단되었다.

  • PDF

The Effect of Ca Addition on Electrochemical Properties of Mg-alloy by Casting (주조법에 의해 제조된 마그네슘 합금에서 칼슘 첨가가 전기화학적 특성에 미치는 영향)

  • Kim, Hye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.1
    • /
    • pp.120-124
    • /
    • 2002
  • It is the purpose of the present to report result of a preliminary electrochemical characterization of the as-cast Mg-Ca alloys. Electrochemical data will be correlated with chemical composition of impurities, and the microstructural change before and after Ca is added. This paper shows that small addition of Ca imparts beneficial effect in electrochemical properties of Mg alloy, primarily, through microstructural modifications.

  • PDF

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.